import torch
from diffusers import FluxPipeline
import gradio as gr
import random
import numpy as np
import os
import spaces
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
# login hf token
HF_TOKEN = os.getenv("HF_TOKEN")
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
# Initialize the pipeline and download the model
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.to(device)
# Enable memory optimizations
pipe.enable_attention_slicing()
# Define the image generation function
@spaces.GPU(duration=180)
def generate_image(prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, progress=gr.Progress(track_tqdm=True)):
if seed == 0:
seed = random.randint(1, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
with torch.inference_mode():
output = pipe(
prompt=prompt,
num_inference_steps=num_inference_steps,
height=height,
width=width,
guidance_scale=guidance_scale,
generator=generator,
num_images_per_prompt=num_images_per_prompt
).images
return output
# Create the Gradio interface
examples = [
["A cat holding a sign that says hello world"],
["a tiny astronaut hatching from an egg on the moon"],
["An astrounat on mars in a futuristic cyborg suit."],
]
css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
gr.HTML(
"""
FLUX.1-dev
"""
)
gr.HTML(
"""
Made by Nick088
"""
)
with gr.Group():
with gr.Column():
prompt = gr.Textbox(label="Prompt", info="Describe the image you want", placeholder="A cat...")
run_button = gr.Button("Run")
result = gr.Gallery(label="Generated AI Images", elem_id="gallery")
with gr.Accordion("Advanced options", open=False):
with gr.Row():
num_inference_steps = gr.Slider(label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", minimum=1, maximum=50, value=25, step=1)
guidance_scale = gr.Slider(label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=7.0, value=3.5, step=0.1)
with gr.Row():
width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum=1024, step=32, value=1024)
height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum=1024, step=32, value=1024)
with gr.Row():
seed = gr.Slider(value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
num_images_per_prompt = gr.Slider(label="Images Per Prompt", info="Number of Images to generate with the settings",minimum=1, maximum=4, step=1, value=2)
gr.Examples(
examples=examples,
fn=generate_image,
inputs=[prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt],
outputs=[result],
cache_examples=CACHE_EXAMPLES
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate_image,
inputs=[prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt],
outputs=[result],
)
demo.queue().launch(share=False)