Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from PIL import Image | |
from RealESRGAN import RealESRGAN | |
import gradio as gr | |
import os | |
from random import randint | |
import shutil | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model2 = RealESRGAN(device, scale=2) | |
model2.load_weights('weights/RealESRGAN_x2.pth', download=True) | |
model4 = RealESRGAN(device, scale=4) | |
model4.load_weights('weights/RealESRGAN_x4.pth', download=True) | |
model8 = RealESRGAN(device, scale=8) | |
model8.load_weights('weights/RealESRGAN_x8.pth', download=True) | |
def inference_image(image, size): | |
global model2 | |
global model4 | |
global model8 | |
if image is None: | |
raise gr.Error("Image not uploaded") | |
width, height = image.size | |
if width >= 5000 or height >= 5000: | |
raise gr.Error("The image is too large.") | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
if size == '2x': | |
try: | |
result = model2.predict(image.convert('RGB')) | |
except torch.cuda.OutOfMemoryError as e: | |
print(e) | |
model2 = RealESRGAN(device, scale=2) | |
model2.load_weights('weights/RealESRGAN_x2.pth', download=False) | |
result = model2.predict(image.convert('RGB')) | |
elif size == '4x': | |
try: | |
result = model4.predict(image.convert('RGB')) | |
except torch.cuda.OutOfMemoryError as e: | |
print(e) | |
model4 = RealESRGAN(device, scale=4) | |
model4.load_weights('weights/RealESRGAN_x4.pth', download=False) | |
result = model2.predict(image.convert('RGB')) | |
else: | |
try: | |
result = model8.predict(image.convert('RGB')) | |
except torch.cuda.OutOfMemoryError as e: | |
print(e) | |
model8 = RealESRGAN(device, scale=8) | |
model8.load_weights('weights/RealESRGAN_x8.pth', download=False) | |
result = model2.predict(image.convert('RGB')) | |
print(f"Image size ({device}): {size} ... OK") | |
return result | |
def inference_video(video, size): | |
_id = randint(1, 10000) | |
INPUT_DIR = "tmp" | |
# Check if the directory exists, if so remove it | |
if os.path.exists(INPUT_DIR): | |
shutil.rmtree(INPUT_DIR) | |
else: | |
# Create the directory, equivalent to 'mkdir -p' | |
os.makedirs(INPUT_DIR, exist_ok=True) | |
os.chdir(INPUT_DIR) | |
upload_folder = 'upload' | |
result_folder = 'results' | |
video_folder = 'videos' | |
video_result_folder = 'results_videos' | |
video_mp4_result_folder = 'results_mp4_videos' | |
result_restored_imgs_folder = 'restored_imgs' | |
if os.path.isdir(upload_folder): | |
print(upload_folder+" exists") | |
else: | |
os.makedirs(upload_folder, exist_ok=True) | |
if os.path.isdir(video_folder): | |
print(video_folder+" exists") | |
else: | |
os.makedirs(video_folder, exist_ok=True) | |
if os.path.isdir(video_result_folder): | |
print(video_result_folder+" exists") | |
else: | |
os.makedirs(video_result_folder, exist_ok=True) | |
if os.path.isdir(video_mp4_result_folder): | |
print(video_mp4_result_folder+" exists") | |
else: | |
os.makedirs(video_mp4_result_folder, exist_ok=True) | |
if os.path.isdir(result_folder): | |
print(result_folder+" exists") | |
else: | |
os.makedirs(result_folder, exist_ok=True) | |
os.chdir("results") | |
if os.path.isdir(result_restored_imgs_folder): | |
print(result_restored_imgs_folder+" exists") | |
else: | |
os.makedirs(result_restored_imgs_folder, exist_ok=True) | |
os.chdir("..") | |
if os.path.isdir(video_folder): | |
shutil.rmtree(video_folder) | |
os.makedirs(video_folder, exist_ok=True) | |
os.chdir("..") | |
try: | |
# Specify the desired output file path with the custom name and ".mp4" extension | |
output_file_path = f"/{INPUT_DIR}/videos/input.mp4" | |
# Save the video input to the specified file path | |
with open(output_file_path, 'wb') as output_file: | |
output_file.write(video) | |
print(f"Video input saved as {output_file_path}") | |
except Exception as e: | |
print(f"Error saving video input: {str(e)}") | |
os.chdir("..") | |
os.system("python inference_video.py") | |
return os.path.join(f'/{INPUT_DIR}/results_mp4_videos/', 'input.mp4') | |
input_image = gr.Image(type='pil', label='Input Image') | |
input_model_image = gr.Radio(['2x', '4x', '8x'], type="value", value="4x", label="Model Upscale/Enhance Type") | |
submit_image_button = gr.Button('Submit') | |
output_image = gr.Image(type="filepath", label="Output Image") | |
tab_img = gr.Interface( | |
fn=inference_image, | |
inputs=[input_image, input_model_image], | |
outputs=output_image, | |
title="Real-ESRGAN Pytorch", | |
description="Gradio UI for Real-ESRGAN Pytorch version. To use it, simply upload your image, or click one of examples and choose the model. Read more at the links below. Please click submit only once <br><p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/ai-forever/Real-ESRGAN'>Github Repo</a></p>" | |
) | |
input_video = gr.Video(label='Input Video') | |
input_model_video = gr.Radio(['2x', '4x', '8x'], type="value", value="4x", label="Model Upscale/Enhance Type") | |
submit_video_button = gr.Button('Submit') | |
output_video = gr.Video(label='Output Video') | |
tab_vid = gr.Interface( | |
fn=inference_video, | |
inputs=[input_video, input_model_video], | |
outputs=output_video, | |
title="Real-ESRGAN Pytorch", | |
description="Gradio UI for Real-ESRGAN Pytorch version. To use it, simply upload your video, or click one of examples and choose the model. Read more at the links below. Please click submit only once <br><p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/ai-forever/Real-ESRGAN'>Github Repo</a></p>" | |
) | |
demo = gr.TabbedInterface([tab_img, tab_vid], ["Image", "Video"]) | |
demo.launch(debug=True, show_error=True) |