Spaces:
Running
Running
import argparse | |
import glob | |
import mimetypes | |
import os | |
import queue | |
import shutil | |
import torch | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from basicsr.utils.logger import AvgTimer | |
from tqdm import tqdm | |
from realesrgan import IOConsumer, PrefetchReader, RealESRGANer | |
from realesrgan.archs.srvgg_arch import SRVGGNetCompact | |
def main(): | |
"""Inference demo for Real-ESRGAN. | |
It mainly for restoring anime videos. | |
""" | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-i', '--input', type=str, default='inputs', help='Input image or folder') | |
parser.add_argument( | |
'-n', | |
'--model_name', | |
type=str, | |
default='RealESRGAN_x4plus', | |
help=('Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus' | |
'RealESRGANv2-anime-xsx2 | RealESRGANv2-animevideo-xsx2-nousm | RealESRGANv2-animevideo-xsx2' | |
'RealESRGANv2-anime-xsx4 | RealESRGANv2-animevideo-xsx4-nousm | RealESRGANv2-animevideo-xsx4')) | |
parser.add_argument('-o', '--output', type=str, default='results', help='Output folder') | |
parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image') | |
parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored video') | |
parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing') | |
parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding') | |
parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border') | |
parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face') | |
parser.add_argument('--half', action='store_true', help='Use half precision during inference') | |
parser.add_argument('-v', '--video', action='store_true', help='Output a video using ffmpeg') | |
parser.add_argument('-a', '--audio', action='store_true', help='Keep audio') | |
parser.add_argument('--fps', type=float, default=None, help='FPS of the output video') | |
parser.add_argument('--consumer', type=int, default=4, help='Number of IO consumers') | |
parser.add_argument( | |
'--alpha_upsampler', | |
type=str, | |
default='realesrgan', | |
help='The upsampler for the alpha channels. Options: realesrgan | bicubic') | |
parser.add_argument( | |
'--ext', | |
type=str, | |
default='auto', | |
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs') | |
args = parser.parse_args() | |
# ---------------------- determine models according to model names ---------------------- # | |
args.model_name = args.model_name.split('.')[0] | |
if args.model_name in ['RealESRGAN_x4plus', 'RealESRNet_x4plus']: # x4 RRDBNet model | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) | |
netscale = 4 | |
elif args.model_name in ['RealESRGAN_x4plus_anime_6B']: # x4 RRDBNet model with 6 blocks | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) | |
netscale = 4 | |
elif args.model_name in ['RealESRGAN_x2plus']: # x2 RRDBNet model | |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) | |
netscale = 2 | |
elif args.model_name in [ | |
'RealESRGANv2-anime-xsx2', 'RealESRGANv2-animevideo-xsx2-nousm', 'RealESRGANv2-animevideo-xsx2' | |
]: # x2 VGG-style model (XS size) | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu') | |
netscale = 2 | |
elif args.model_name in [ | |
'RealESRGANv2-anime-xsx4', 'RealESRGANv2-animevideo-xsx4-nousm', 'RealESRGANv2-animevideo-xsx4' | |
]: # x4 VGG-style model (XS size) | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu') | |
netscale = 4 | |
# ---------------------- determine model paths ---------------------- # | |
model_path = os.path.join('experiments/pretrained_models', args.model_name + '.pth') | |
if not os.path.isfile(model_path): | |
model_path = os.path.join('realesrgan/weights', args.model_name + '.pth') | |
if not os.path.isfile(model_path): | |
raise ValueError(f'Model {args.model_name} does not exist.') | |
# restorer | |
upsampler = RealESRGANer( | |
scale=netscale, | |
model_path=model_path, | |
model=model, | |
tile=args.tile, | |
tile_pad=args.tile_pad, | |
pre_pad=args.pre_pad, | |
half=args.half) | |
if args.face_enhance: # Use GFPGAN for face enhancement | |
from gfpgan import GFPGANer | |
face_enhancer = GFPGANer( | |
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth', | |
upscale=args.outscale, | |
arch='clean', | |
channel_multiplier=2, | |
bg_upsampler=upsampler) | |
os.makedirs(args.output, exist_ok=True) | |
# for saving restored frames | |
save_frame_folder = os.path.join(args.output, 'frames_tmpout') | |
os.makedirs(save_frame_folder, exist_ok=True) | |
if mimetypes.guess_type(args.input)[0].startswith('video'): # is a video file | |
video_name = os.path.splitext(os.path.basename(args.input))[0] | |
frame_folder = os.path.join('tmp_frames', video_name) | |
os.makedirs(frame_folder, exist_ok=True) | |
# use ffmpeg to extract frames | |
os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {frame_folder}/frame%08d.png') | |
# get image path list | |
paths = sorted(glob.glob(os.path.join(frame_folder, '*'))) | |
if args.video: | |
if args.fps is None: | |
# get input video fps | |
import ffmpeg | |
probe = ffmpeg.probe(args.input) | |
video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video'] | |
args.fps = eval(video_streams[0]['avg_frame_rate']) | |
elif mimetypes.guess_type(args.input)[0].startswith('image'): # is an image file | |
paths = [args.input] | |
video_name = 'video' | |
else: | |
paths = sorted(glob.glob(os.path.join(args.input, '*'))) | |
video_name = 'video' | |
timer = AvgTimer() | |
timer.start() | |
pbar = tqdm(total=len(paths), unit='frame', desc='inference') | |
# set up prefetch reader | |
reader = PrefetchReader(paths, num_prefetch_queue=4) | |
reader.start() | |
que = queue.Queue() | |
consumers = [IOConsumer(args, que, f'IO_{i}') for i in range(args.consumer)] | |
for consumer in consumers: | |
consumer.start() | |
for idx, (path, img) in enumerate(zip(paths, reader)): | |
imgname, extension = os.path.splitext(os.path.basename(path)) | |
if len(img.shape) == 3 and img.shape[2] == 4: | |
img_mode = 'RGBA' | |
else: | |
img_mode = None | |
try: | |
if args.face_enhance: | |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) | |
else: | |
output, _ = upsampler.enhance(img, outscale=args.outscale) | |
except RuntimeError as error: | |
print('Error', error) | |
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.') | |
else: | |
if args.ext == 'auto': | |
extension = extension[1:] | |
else: | |
extension = args.ext | |
if img_mode == 'RGBA': # RGBA images should be saved in png format | |
extension = 'png' | |
save_path = os.path.join(save_frame_folder, f'{imgname}_out.{extension}') | |
que.put({'output': output, 'save_path': save_path}) | |
pbar.update(1) | |
torch.cuda.synchronize() | |
timer.record() | |
avg_fps = 1. / (timer.get_avg_time() + 1e-7) | |
pbar.set_description(f'idx {idx}, fps {avg_fps:.2f}') | |
for _ in range(args.consumer): | |
que.put('quit') | |
for consumer in consumers: | |
consumer.join() | |
pbar.close() | |
# merge frames to video | |
if args.video: | |
video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4') | |
if args.audio: | |
os.system( | |
f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} -i {args.input}' | |
f' -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}') | |
else: | |
os.system(f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} ' | |
f'-c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}') | |
# delete tmp file | |
shutil.rmtree(save_frame_folder) | |
if os.path.isdir(frame_folder): | |
shutil.rmtree(frame_folder) | |
if __name__ == '__main__': | |
main() | |