akhaliq3 commited on
Commit
bf91721
·
1 Parent(s): e40c95c

spaces demo

Browse files
FAQ.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # FAQ
2
+
3
+ 1. **What is the difference of `--netscale` and `outscale`?**
4
+
5
+ A: TODO.
6
+
7
+ 1. **How to select models?**
8
+
9
+ A: TODO.
LICENSE ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2021, Xintao Wang
4
+ All rights reserved.
5
+
6
+ Redistribution and use in source and binary forms, with or without
7
+ modification, are permitted provided that the following conditions are met:
8
+
9
+ 1. Redistributions of source code must retain the above copyright notice, this
10
+ list of conditions and the following disclaimer.
11
+
12
+ 2. Redistributions in binary form must reproduce the above copyright notice,
13
+ this list of conditions and the following disclaimer in the documentation
14
+ and/or other materials provided with the distribution.
15
+
16
+ 3. Neither the name of the copyright holder nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
MANIFEST.in ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ include assets/*
2
+ include inputs/*
3
+ include scripts/*.py
4
+ include inference_realesrgan.py
5
+ include VERSION
6
+ include LICENSE
7
+ include requirements.txt
8
+ include realesrgan/weights/README.md
Training.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # :computer: How to Train Real-ESRGAN
2
+
3
+ The training codes have been released. <br>
4
+ Note that the codes have a lot of refactoring. So there may be some bugs/performance drops. Welcome to report issues and I will also retrain the models.
5
+
6
+ ## Overview
7
+
8
+ The training has been divided into two stages. These two stages have the same data synthesis process and training pipeline, except for the loss functions. Specifically,
9
+
10
+ 1. We first train Real-ESRNet with L1 loss from the pre-trained model ESRGAN.
11
+ 1. We then use the trained Real-ESRNet model as an initialization of the generator, and train the Real-ESRGAN with a combination of L1 loss, perceptual loss and GAN loss.
12
+
13
+ ## Dataset Preparation
14
+
15
+ We use DF2K (DIV2K and Flickr2K) + OST datasets for our training. Only HR images are required. <br>
16
+ You can download from :
17
+
18
+ 1. DIV2K: http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip
19
+ 2. Flickr2K: https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar
20
+ 3. OST: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/datasets/OST_dataset.zip
21
+
22
+ For the DF2K dataset, we use a multi-scale strategy, *i.e.*, we downsample HR images to obtain several Ground-Truth images with different scales.
23
+
24
+ We then crop DF2K images into sub-images for faster IO and processing.
25
+
26
+ You need to prepare a txt file containing the image paths. The following are some examples in `meta_info_DF2Kmultiscale+OST_sub.txt` (As different users may have different sub-images partitions, this file is not suitable for your purpose and you need to prepare your own txt file):
27
+
28
+ ```txt
29
+ DF2K_HR_sub/000001_s001.png
30
+ DF2K_HR_sub/000001_s002.png
31
+ DF2K_HR_sub/000001_s003.png
32
+ ...
33
+ ```
34
+
35
+ ## Train Real-ESRNet
36
+
37
+ 1. Download pre-trained model [ESRGAN](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth) into `experiments/pretrained_models`.
38
+ ```bash
39
+ wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth -P experiments/pretrained_models
40
+ ```
41
+ 1. Modify the content in the option file `options/train_realesrnet_x4plus.yml` accordingly:
42
+ ```yml
43
+ train:
44
+ name: DF2K+OST
45
+ type: RealESRGANDataset
46
+ dataroot_gt: datasets/DF2K # modify to the root path of your folder
47
+ meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt # modify to your own generate meta info txt
48
+ io_backend:
49
+ type: disk
50
+ ```
51
+ 1. If you want to perform validation during training, uncomment those lines and modify accordingly:
52
+ ```yml
53
+ # Uncomment these for validation
54
+ # val:
55
+ # name: validation
56
+ # type: PairedImageDataset
57
+ # dataroot_gt: path_to_gt
58
+ # dataroot_lq: path_to_lq
59
+ # io_backend:
60
+ # type: disk
61
+
62
+ ...
63
+
64
+ # Uncomment these for validation
65
+ # validation settings
66
+ # val:
67
+ # val_freq: !!float 5e3
68
+ # save_img: True
69
+
70
+ # metrics:
71
+ # psnr: # metric name, can be arbitrary
72
+ # type: calculate_psnr
73
+ # crop_border: 4
74
+ # test_y_channel: false
75
+ ```
76
+ 1. Before the formal training, you may run in the `--debug` mode to see whether everything is OK. We use four GPUs for training:
77
+ ```bash
78
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
79
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --debug
80
+ ```
81
+ 1. The formal training. We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary.
82
+ ```bash
83
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
84
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --auto_resume
85
+ ```
86
+
87
+ ## Train Real-ESRGAN
88
+
89
+ 1. After the training of Real-ESRNet, you now have the file `experiments/train_RealESRNetx4plus_1000k_B12G4_fromESRGAN/model/net_g_1000000.pth`. If you need to specify the pre-trained path to other files, modify the `pretrain_network_g` value in the option file `train_realesrgan_x4plus.yml`.
90
+ 1. Modify the option file `train_realesrgan_x4plus.yml` accordingly. Most modifications are similar to those listed above.
91
+ 1. Before the formal training, you may run in the `--debug` mode to see whether everything is OK. We use four GPUs for training:
92
+ ```bash
93
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
94
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --debug
95
+ ```
96
+ 1. The formal training. We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary.
97
+ ```bash
98
+ CUDA_VISIBLE_DEVICES=0,1,2,3 \
99
+ python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --auto_resume
100
+ ```
VERSION ADDED
@@ -0,0 +1 @@
 
 
1
+ 0.2.1
experiments/pretrained_models/README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # Put downloaded pre-trained models here
inference_realesrgan.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import cv2
3
+ import glob
4
+ import os
5
+
6
+ from realesrgan import RealESRGANer
7
+
8
+
9
+ def main():
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument('--input', type=str, default='inputs', help='Input image or folder')
12
+ parser.add_argument(
13
+ '--model_path',
14
+ type=str,
15
+ default='experiments/pretrained_models/RealESRGAN_x4plus.pth',
16
+ help='Path to the pre-trained model')
17
+ parser.add_argument('--output', type=str, default='results', help='Output folder')
18
+ parser.add_argument('--netscale', type=int, default=4, help='Upsample scale factor of the network')
19
+ parser.add_argument('--outscale', type=float, default=4, help='The final upsampling scale of the image')
20
+ parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image')
21
+ parser.add_argument('--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
22
+ parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
23
+ parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
24
+ parser.add_argument('--half', action='store_true', help='Use half precision during inference')
25
+ parser.add_argument(
26
+ '--alpha_upsampler',
27
+ type=str,
28
+ default='realesrgan',
29
+ help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
30
+ parser.add_argument(
31
+ '--ext',
32
+ type=str,
33
+ default='auto',
34
+ help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
35
+ args = parser.parse_args()
36
+
37
+ upsampler = RealESRGANer(
38
+ scale=args.netscale,
39
+ model_path=args.model_path,
40
+ tile=args.tile,
41
+ tile_pad=args.tile_pad,
42
+ pre_pad=args.pre_pad,
43
+ half=args.half)
44
+ os.makedirs(args.output, exist_ok=True)
45
+ if os.path.isfile(args.input):
46
+ paths = [args.input]
47
+ else:
48
+ paths = sorted(glob.glob(os.path.join(args.input, '*')))
49
+
50
+ for idx, path in enumerate(paths):
51
+ imgname, extension = os.path.splitext(os.path.basename(path))
52
+ print('Testing', idx, imgname)
53
+
54
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
55
+ h, w = img.shape[0:2]
56
+ if max(h, w) > 1000 and args.netscale == 4:
57
+ import warnings
58
+ warnings.warn('The input image is large, try X2 model for better performace.')
59
+ if max(h, w) < 500 and args.netscale == 2:
60
+ import warnings
61
+ warnings.warn('The input image is small, try X4 model for better performace.')
62
+
63
+ try:
64
+ output, img_mode = upsampler.enhance(img, outscale=args.outscale)
65
+ except Exception as error:
66
+ print('Error', error)
67
+ else:
68
+ if args.ext == 'auto':
69
+ extension = extension[1:]
70
+ else:
71
+ extension = args.ext
72
+ if img_mode == 'RGBA': # RGBA images should be saved in png format
73
+ extension = 'png'
74
+ save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}')
75
+ cv2.imwrite(save_path, output)
76
+
77
+
78
+ if __name__ == '__main__':
79
+ main()
options/train_realesrgan_x4plus.yml ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRGANx4plus_400k_B12G4_fromRealESRNet
3
+ model_type: RealESRGANModel
4
+ scale: 4
5
+ num_gpu: 4
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRGANModel ----------------- #
9
+ # USM the ground-truth
10
+ l1_gt_usm: True
11
+ percep_gt_usm: True
12
+ gan_gt_usm: False
13
+
14
+ # the first degradation process
15
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
16
+ resize_range: [0.15, 1.5]
17
+ gaussian_noise_prob: 0.5
18
+ noise_range: [1, 30]
19
+ poisson_scale_range: [0.05, 3]
20
+ gray_noise_prob: 0.4
21
+ jpeg_range: [30, 95]
22
+
23
+ # the second degradation process
24
+ second_blur_prob: 0.8
25
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
26
+ resize_range2: [0.3, 1.2]
27
+ gaussian_noise_prob2: 0.5
28
+ noise_range2: [1, 25]
29
+ poisson_scale_range2: [0.05, 2.5]
30
+ gray_noise_prob2: 0.4
31
+ jpeg_range2: [30, 95]
32
+
33
+ gt_size: 256
34
+ queue_size: 180
35
+
36
+ # dataset and data loader settings
37
+ datasets:
38
+ train:
39
+ name: DF2K+OST
40
+ type: RealESRGANDataset
41
+ dataroot_gt: datasets/DF2K
42
+ meta_info: realesrgan/data/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
43
+ io_backend:
44
+ type: disk
45
+
46
+ blur_kernel_size: 21
47
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
48
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
49
+ sinc_prob: 0.1
50
+ blur_sigma: [0.2, 3]
51
+ betag_range: [0.5, 4]
52
+ betap_range: [1, 2]
53
+
54
+ blur_kernel_size2: 21
55
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
56
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
57
+ sinc_prob2: 0.1
58
+ blur_sigma2: [0.2, 1.5]
59
+ betag_range2: [0.5, 4]
60
+ betap_range2: [1, 2]
61
+
62
+ final_sinc_prob: 0.8
63
+
64
+ gt_size: 256
65
+ use_hflip: True
66
+ use_rot: False
67
+
68
+ # data loader
69
+ use_shuffle: true
70
+ num_worker_per_gpu: 5
71
+ batch_size_per_gpu: 12
72
+ dataset_enlarge_ratio: 1
73
+ prefetch_mode: ~
74
+
75
+ # Uncomment these for validation
76
+ # val:
77
+ # name: validation
78
+ # type: PairedImageDataset
79
+ # dataroot_gt: path_to_gt
80
+ # dataroot_lq: path_to_lq
81
+ # io_backend:
82
+ # type: disk
83
+
84
+ # network structures
85
+ network_g:
86
+ type: RRDBNet
87
+ num_in_ch: 3
88
+ num_out_ch: 3
89
+ num_feat: 64
90
+ num_block: 23
91
+ num_grow_ch: 32
92
+
93
+
94
+ network_d:
95
+ type: UNetDiscriminatorSN
96
+ num_in_ch: 3
97
+ num_feat: 64
98
+ skip_connection: True
99
+
100
+ # path
101
+ path:
102
+ # use the pre-trained Real-ESRNet model
103
+ pretrain_network_g: experiments/train_RealESRNetx4plus_1000k_B12G4_fromESRGAN/models/net_g_1000000.pth
104
+ param_key_g: params_ema
105
+ strict_load_g: true
106
+ resume_state: ~
107
+
108
+ # training settings
109
+ train:
110
+ ema_decay: 0.999
111
+ optim_g:
112
+ type: Adam
113
+ lr: !!float 1e-4
114
+ weight_decay: 0
115
+ betas: [0.9, 0.99]
116
+ optim_d:
117
+ type: Adam
118
+ lr: !!float 1e-4
119
+ weight_decay: 0
120
+ betas: [0.9, 0.99]
121
+
122
+ scheduler:
123
+ type: MultiStepLR
124
+ milestones: [400000]
125
+ gamma: 0.5
126
+
127
+ total_iter: 400000
128
+ warmup_iter: -1 # no warm up
129
+
130
+ # losses
131
+ pixel_opt:
132
+ type: L1Loss
133
+ loss_weight: 1.0
134
+ reduction: mean
135
+ # perceptual loss (content and style losses)
136
+ perceptual_opt:
137
+ type: PerceptualLoss
138
+ layer_weights:
139
+ # before relu
140
+ 'conv1_2': 0.1
141
+ 'conv2_2': 0.1
142
+ 'conv3_4': 1
143
+ 'conv4_4': 1
144
+ 'conv5_4': 1
145
+ vgg_type: vgg19
146
+ use_input_norm: true
147
+ perceptual_weight: !!float 1.0
148
+ style_weight: 0
149
+ range_norm: false
150
+ criterion: l1
151
+ # gan loss
152
+ gan_opt:
153
+ type: GANLoss
154
+ gan_type: vanilla
155
+ real_label_val: 1.0
156
+ fake_label_val: 0.0
157
+ loss_weight: !!float 1e-1
158
+
159
+ net_d_iters: 1
160
+ net_d_init_iters: 0
161
+
162
+ # Uncomment these for validation
163
+ # validation settings
164
+ # val:
165
+ # val_freq: !!float 5e3
166
+ # save_img: True
167
+
168
+ # metrics:
169
+ # psnr: # metric name, can be arbitrary
170
+ # type: calculate_psnr
171
+ # crop_border: 4
172
+ # test_y_channel: false
173
+
174
+ # logging settings
175
+ logger:
176
+ print_freq: 100
177
+ save_checkpoint_freq: !!float 5e3
178
+ use_tb_logger: true
179
+ wandb:
180
+ project: ~
181
+ resume_id: ~
182
+
183
+ # dist training settings
184
+ dist_params:
185
+ backend: nccl
186
+ port: 29500
options/train_realesrnet_x4plus.yml ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRNetx4plus_1000k_B12G4_fromESRGAN
3
+ model_type: RealESRNetModel
4
+ scale: 4
5
+ num_gpu: 4
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRNetModel ----------------- #
9
+ gt_usm: True # USM the ground-truth
10
+
11
+ # the first degradation process
12
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
13
+ resize_range: [0.15, 1.5]
14
+ gaussian_noise_prob: 0.5
15
+ noise_range: [1, 30]
16
+ poisson_scale_range: [0.05, 3]
17
+ gray_noise_prob: 0.4
18
+ jpeg_range: [30, 95]
19
+
20
+ # the second degradation process
21
+ second_blur_prob: 0.8
22
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
23
+ resize_range2: [0.3, 1.2]
24
+ gaussian_noise_prob2: 0.5
25
+ noise_range2: [1, 25]
26
+ poisson_scale_range2: [0.05, 2.5]
27
+ gray_noise_prob2: 0.4
28
+ jpeg_range2: [30, 95]
29
+
30
+ gt_size: 256
31
+ queue_size: 180
32
+
33
+ # dataset and data loader settings
34
+ datasets:
35
+ train:
36
+ name: DF2K+OST
37
+ type: RealESRGANDataset
38
+ dataroot_gt: datasets/DF2K
39
+ meta_info: realesrgan/data/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
40
+ io_backend:
41
+ type: disk
42
+
43
+ blur_kernel_size: 21
44
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
45
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
46
+ sinc_prob: 0.1
47
+ blur_sigma: [0.2, 3]
48
+ betag_range: [0.5, 4]
49
+ betap_range: [1, 2]
50
+
51
+ blur_kernel_size2: 21
52
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
53
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
54
+ sinc_prob2: 0.1
55
+ blur_sigma2: [0.2, 1.5]
56
+ betag_range2: [0.5, 4]
57
+ betap_range2: [1, 2]
58
+
59
+ final_sinc_prob: 0.8
60
+
61
+ gt_size: 256
62
+ use_hflip: True
63
+ use_rot: False
64
+
65
+ # data loader
66
+ use_shuffle: true
67
+ num_worker_per_gpu: 5
68
+ batch_size_per_gpu: 12
69
+ dataset_enlarge_ratio: 1
70
+ prefetch_mode: ~
71
+
72
+ # Uncomment these for validation
73
+ # val:
74
+ # name: validation
75
+ # type: PairedImageDataset
76
+ # dataroot_gt: path_to_gt
77
+ # dataroot_lq: path_to_lq
78
+ # io_backend:
79
+ # type: disk
80
+
81
+ # network structures
82
+ network_g:
83
+ type: RRDBNet
84
+ num_in_ch: 3
85
+ num_out_ch: 3
86
+ num_feat: 64
87
+ num_block: 23
88
+ num_grow_ch: 32
89
+
90
+ # path
91
+ path:
92
+ pretrain_network_g: experiments/pretrained_models/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth
93
+ param_key_g: params_ema
94
+ strict_load_g: true
95
+ resume_state: ~
96
+
97
+ # training settings
98
+ train:
99
+ ema_decay: 0.999
100
+ optim_g:
101
+ type: Adam
102
+ lr: !!float 2e-4
103
+ weight_decay: 0
104
+ betas: [0.9, 0.99]
105
+
106
+ scheduler:
107
+ type: MultiStepLR
108
+ milestones: [1000000]
109
+ gamma: 0.5
110
+
111
+ total_iter: 1000000
112
+ warmup_iter: -1 # no warm up
113
+
114
+ # losses
115
+ pixel_opt:
116
+ type: L1Loss
117
+ loss_weight: 1.0
118
+ reduction: mean
119
+
120
+ # Uncomment these for validation
121
+ # validation settings
122
+ # val:
123
+ # val_freq: !!float 5e3
124
+ # save_img: True
125
+
126
+ # metrics:
127
+ # psnr: # metric name, can be arbitrary
128
+ # type: calculate_psnr
129
+ # crop_border: 4
130
+ # test_y_channel: false
131
+
132
+ # logging settings
133
+ logger:
134
+ print_freq: 100
135
+ save_checkpoint_freq: !!float 5e3
136
+ use_tb_logger: true
137
+ wandb:
138
+ project: ~
139
+ resume_id: ~
140
+
141
+ # dist training settings
142
+ dist_params:
143
+ backend: nccl
144
+ port: 29500
realesrgan/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ from .archs import *
3
+ from .data import *
4
+ from .models import *
5
+ from .utils import *
6
+ from .version import __gitsha__, __version__
realesrgan/archs/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import arch modules for registry
6
+ # scan all the files that end with '_arch.py' under the archs folder
7
+ arch_folder = osp.dirname(osp.abspath(__file__))
8
+ arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')]
9
+ # import all the arch modules
10
+ _arch_modules = [importlib.import_module(f'realesrgan.archs.{file_name}') for file_name in arch_filenames]
realesrgan/archs/discriminator_arch.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from basicsr.utils.registry import ARCH_REGISTRY
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+ from torch.nn.utils import spectral_norm
5
+
6
+
7
+ @ARCH_REGISTRY.register()
8
+ class UNetDiscriminatorSN(nn.Module):
9
+ """Defines a U-Net discriminator with spectral normalization (SN)"""
10
+
11
+ def __init__(self, num_in_ch, num_feat=64, skip_connection=True):
12
+ super(UNetDiscriminatorSN, self).__init__()
13
+ self.skip_connection = skip_connection
14
+ norm = spectral_norm
15
+
16
+ self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1)
17
+
18
+ self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False))
19
+ self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False))
20
+ self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False))
21
+ # upsample
22
+ self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False))
23
+ self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False))
24
+ self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False))
25
+
26
+ # extra
27
+ self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
28
+ self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
29
+
30
+ self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1)
31
+
32
+ def forward(self, x):
33
+ x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True)
34
+ x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True)
35
+ x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True)
36
+ x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True)
37
+
38
+ # upsample
39
+ x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False)
40
+ x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True)
41
+
42
+ if self.skip_connection:
43
+ x4 = x4 + x2
44
+ x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False)
45
+ x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True)
46
+
47
+ if self.skip_connection:
48
+ x5 = x5 + x1
49
+ x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False)
50
+ x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True)
51
+
52
+ if self.skip_connection:
53
+ x6 = x6 + x0
54
+
55
+ # extra
56
+ out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True)
57
+ out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True)
58
+ out = self.conv9(out)
59
+
60
+ return out
realesrgan/data/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import dataset modules for registry
6
+ # scan all the files that end with '_dataset.py' under the data folder
7
+ data_folder = osp.dirname(osp.abspath(__file__))
8
+ dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
9
+ # import all the dataset modules
10
+ _dataset_modules = [importlib.import_module(f'realesrgan.data.{file_name}') for file_name in dataset_filenames]
realesrgan/data/realesrgan_dataset.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import os
5
+ import os.path as osp
6
+ import random
7
+ import time
8
+ import torch
9
+ from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
10
+ from basicsr.data.transforms import augment
11
+ from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
12
+ from basicsr.utils.registry import DATASET_REGISTRY
13
+ from torch.utils import data as data
14
+
15
+
16
+ @DATASET_REGISTRY.register()
17
+ class RealESRGANDataset(data.Dataset):
18
+ """
19
+ Dataset used for Real-ESRGAN model.
20
+ """
21
+
22
+ def __init__(self, opt):
23
+ super(RealESRGANDataset, self).__init__()
24
+ self.opt = opt
25
+ # file client (io backend)
26
+ self.file_client = None
27
+ self.io_backend_opt = opt['io_backend']
28
+ self.gt_folder = opt['dataroot_gt']
29
+
30
+ if self.io_backend_opt['type'] == 'lmdb':
31
+ self.io_backend_opt['db_paths'] = [self.gt_folder]
32
+ self.io_backend_opt['client_keys'] = ['gt']
33
+ if not self.gt_folder.endswith('.lmdb'):
34
+ raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
35
+ with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
36
+ self.paths = [line.split('.')[0] for line in fin]
37
+ else:
38
+ with open(self.opt['meta_info']) as fin:
39
+ paths = [line.strip() for line in fin]
40
+ self.paths = [os.path.join(self.gt_folder, v) for v in paths]
41
+
42
+ # blur settings for the first degradation
43
+ self.blur_kernel_size = opt['blur_kernel_size']
44
+ self.kernel_list = opt['kernel_list']
45
+ self.kernel_prob = opt['kernel_prob']
46
+ self.blur_sigma = opt['blur_sigma']
47
+ self.betag_range = opt['betag_range']
48
+ self.betap_range = opt['betap_range']
49
+ self.sinc_prob = opt['sinc_prob']
50
+
51
+ # blur settings for the second degradation
52
+ self.blur_kernel_size2 = opt['blur_kernel_size2']
53
+ self.kernel_list2 = opt['kernel_list2']
54
+ self.kernel_prob2 = opt['kernel_prob2']
55
+ self.blur_sigma2 = opt['blur_sigma2']
56
+ self.betag_range2 = opt['betag_range2']
57
+ self.betap_range2 = opt['betap_range2']
58
+ self.sinc_prob2 = opt['sinc_prob2']
59
+
60
+ # a final sinc filter
61
+ self.final_sinc_prob = opt['final_sinc_prob']
62
+
63
+ self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21
64
+ self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect
65
+ self.pulse_tensor[10, 10] = 1
66
+
67
+ def __getitem__(self, index):
68
+ if self.file_client is None:
69
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
70
+
71
+ # -------------------------------- Load gt images -------------------------------- #
72
+ # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
73
+ gt_path = self.paths[index]
74
+ # avoid errors caused by high latency in reading files
75
+ retry = 3
76
+ while retry > 0:
77
+ try:
78
+ img_bytes = self.file_client.get(gt_path, 'gt')
79
+ except Exception as e:
80
+ logger = get_root_logger()
81
+ logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}')
82
+ # change another file to read
83
+ index = random.randint(0, self.__len__())
84
+ gt_path = self.paths[index]
85
+ time.sleep(1) # sleep 1s for occasional server congestion
86
+ else:
87
+ break
88
+ finally:
89
+ retry -= 1
90
+ img_gt = imfrombytes(img_bytes, float32=True)
91
+
92
+ # -------------------- augmentation for training: flip, rotation -------------------- #
93
+ img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot'])
94
+
95
+ # crop or pad to 400: 400 is hard-coded. You may change it accordingly
96
+ h, w = img_gt.shape[0:2]
97
+ crop_pad_size = 400
98
+ # pad
99
+ if h < crop_pad_size or w < crop_pad_size:
100
+ pad_h = max(0, crop_pad_size - h)
101
+ pad_w = max(0, crop_pad_size - w)
102
+ img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
103
+ # crop
104
+ if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size:
105
+ h, w = img_gt.shape[0:2]
106
+ # randomly choose top and left coordinates
107
+ top = random.randint(0, h - crop_pad_size)
108
+ left = random.randint(0, w - crop_pad_size)
109
+ img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...]
110
+
111
+ # ------------------------ Generate kernels (used in the first degradation) ------------------------ #
112
+ kernel_size = random.choice(self.kernel_range)
113
+ if np.random.uniform() < self.opt['sinc_prob']:
114
+ # this sinc filter setting is for kernels ranging from [7, 21]
115
+ if kernel_size < 13:
116
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
117
+ else:
118
+ omega_c = np.random.uniform(np.pi / 5, np.pi)
119
+ kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
120
+ else:
121
+ kernel = random_mixed_kernels(
122
+ self.kernel_list,
123
+ self.kernel_prob,
124
+ kernel_size,
125
+ self.blur_sigma,
126
+ self.blur_sigma, [-math.pi, math.pi],
127
+ self.betag_range,
128
+ self.betap_range,
129
+ noise_range=None)
130
+ # pad kernel
131
+ pad_size = (21 - kernel_size) // 2
132
+ kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
133
+
134
+ # ------------------------ Generate kernels (used in the second degradation) ------------------------ #
135
+ kernel_size = random.choice(self.kernel_range)
136
+ if np.random.uniform() < self.opt['sinc_prob2']:
137
+ if kernel_size < 13:
138
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
139
+ else:
140
+ omega_c = np.random.uniform(np.pi / 5, np.pi)
141
+ kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
142
+ else:
143
+ kernel2 = random_mixed_kernels(
144
+ self.kernel_list2,
145
+ self.kernel_prob2,
146
+ kernel_size,
147
+ self.blur_sigma2,
148
+ self.blur_sigma2, [-math.pi, math.pi],
149
+ self.betag_range2,
150
+ self.betap_range2,
151
+ noise_range=None)
152
+
153
+ # pad kernel
154
+ pad_size = (21 - kernel_size) // 2
155
+ kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
156
+
157
+ # ------------------------------------- sinc kernel ------------------------------------- #
158
+ if np.random.uniform() < self.opt['final_sinc_prob']:
159
+ kernel_size = random.choice(self.kernel_range)
160
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
161
+ sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
162
+ sinc_kernel = torch.FloatTensor(sinc_kernel)
163
+ else:
164
+ sinc_kernel = self.pulse_tensor
165
+
166
+ # BGR to RGB, HWC to CHW, numpy to tensor
167
+ img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
168
+ kernel = torch.FloatTensor(kernel)
169
+ kernel2 = torch.FloatTensor(kernel2)
170
+
171
+ return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path}
172
+ return return_d
173
+
174
+ def __len__(self):
175
+ return len(self.paths)
realesrgan/models/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from basicsr.utils import scandir
3
+ from os import path as osp
4
+
5
+ # automatically scan and import model modules for registry
6
+ # scan all the files that end with '_model.py' under the model folder
7
+ model_folder = osp.dirname(osp.abspath(__file__))
8
+ model_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(model_folder) if v.endswith('_model.py')]
9
+ # import all the model modules
10
+ _model_modules = [importlib.import_module(f'realesrgan.models.{file_name}') for file_name in model_filenames]
realesrgan/models/realesrgan_model.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import torch
4
+ from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
5
+ from basicsr.data.transforms import paired_random_crop
6
+ from basicsr.models.srgan_model import SRGANModel
7
+ from basicsr.utils import DiffJPEG, USMSharp
8
+ from basicsr.utils.img_process_util import filter2D
9
+ from basicsr.utils.registry import MODEL_REGISTRY
10
+ from collections import OrderedDict
11
+ from torch.nn import functional as F
12
+
13
+
14
+ @MODEL_REGISTRY.register()
15
+ class RealESRGANModel(SRGANModel):
16
+ """RealESRGAN Model"""
17
+
18
+ def __init__(self, opt):
19
+ super(RealESRGANModel, self).__init__(opt)
20
+ self.jpeger = DiffJPEG(differentiable=False).cuda()
21
+ self.usm_sharpener = USMSharp().cuda()
22
+ self.queue_size = opt['queue_size']
23
+
24
+ @torch.no_grad()
25
+ def _dequeue_and_enqueue(self):
26
+ # training pair pool
27
+ # initialize
28
+ b, c, h, w = self.lq.size()
29
+ if not hasattr(self, 'queue_lr'):
30
+ assert self.queue_size % b == 0, 'queue size should be divisible by batch size'
31
+ self.queue_lr = torch.zeros(self.queue_size, c, h, w).cuda()
32
+ _, c, h, w = self.gt.size()
33
+ self.queue_gt = torch.zeros(self.queue_size, c, h, w).cuda()
34
+ self.queue_ptr = 0
35
+ if self.queue_ptr == self.queue_size: # full
36
+ # do dequeue and enqueue
37
+ # shuffle
38
+ idx = torch.randperm(self.queue_size)
39
+ self.queue_lr = self.queue_lr[idx]
40
+ self.queue_gt = self.queue_gt[idx]
41
+ # get
42
+ lq_dequeue = self.queue_lr[0:b, :, :, :].clone()
43
+ gt_dequeue = self.queue_gt[0:b, :, :, :].clone()
44
+ # update
45
+ self.queue_lr[0:b, :, :, :] = self.lq.clone()
46
+ self.queue_gt[0:b, :, :, :] = self.gt.clone()
47
+
48
+ self.lq = lq_dequeue
49
+ self.gt = gt_dequeue
50
+ else:
51
+ # only do enqueue
52
+ self.queue_lr[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.lq.clone()
53
+ self.queue_gt[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.gt.clone()
54
+ self.queue_ptr = self.queue_ptr + b
55
+
56
+ @torch.no_grad()
57
+ def feed_data(self, data):
58
+ if self.is_train:
59
+ # training data synthesis
60
+ self.gt = data['gt'].to(self.device)
61
+ self.gt_usm = self.usm_sharpener(self.gt)
62
+
63
+ self.kernel1 = data['kernel1'].to(self.device)
64
+ self.kernel2 = data['kernel2'].to(self.device)
65
+ self.sinc_kernel = data['sinc_kernel'].to(self.device)
66
+
67
+ ori_h, ori_w = self.gt.size()[2:4]
68
+
69
+ # ----------------------- The first degradation process ----------------------- #
70
+ # blur
71
+ out = filter2D(self.gt_usm, self.kernel1)
72
+ # random resize
73
+ updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob'])[0]
74
+ if updown_type == 'up':
75
+ scale = np.random.uniform(1, self.opt['resize_range'][1])
76
+ elif updown_type == 'down':
77
+ scale = np.random.uniform(self.opt['resize_range'][0], 1)
78
+ else:
79
+ scale = 1
80
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
81
+ out = F.interpolate(out, scale_factor=scale, mode=mode)
82
+ # noise
83
+ gray_noise_prob = self.opt['gray_noise_prob']
84
+ if np.random.uniform() < self.opt['gaussian_noise_prob']:
85
+ out = random_add_gaussian_noise_pt(
86
+ out, sigma_range=self.opt['noise_range'], clip=True, rounds=False, gray_prob=gray_noise_prob)
87
+ else:
88
+ out = random_add_poisson_noise_pt(
89
+ out,
90
+ scale_range=self.opt['poisson_scale_range'],
91
+ gray_prob=gray_noise_prob,
92
+ clip=True,
93
+ rounds=False)
94
+ # JPEG compression
95
+ jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range'])
96
+ out = torch.clamp(out, 0, 1)
97
+ out = self.jpeger(out, quality=jpeg_p)
98
+
99
+ # ----------------------- The second degradation process ----------------------- #
100
+ # blur
101
+ if np.random.uniform() < self.opt['second_blur_prob']:
102
+ out = filter2D(out, self.kernel2)
103
+ # random resize
104
+ updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob2'])[0]
105
+ if updown_type == 'up':
106
+ scale = np.random.uniform(1, self.opt['resize_range2'][1])
107
+ elif updown_type == 'down':
108
+ scale = np.random.uniform(self.opt['resize_range2'][0], 1)
109
+ else:
110
+ scale = 1
111
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
112
+ out = F.interpolate(
113
+ out, size=(int(ori_h / self.opt['scale'] * scale), int(ori_w / self.opt['scale'] * scale)), mode=mode)
114
+ # noise
115
+ gray_noise_prob = self.opt['gray_noise_prob2']
116
+ if np.random.uniform() < self.opt['gaussian_noise_prob2']:
117
+ out = random_add_gaussian_noise_pt(
118
+ out, sigma_range=self.opt['noise_range2'], clip=True, rounds=False, gray_prob=gray_noise_prob)
119
+ else:
120
+ out = random_add_poisson_noise_pt(
121
+ out,
122
+ scale_range=self.opt['poisson_scale_range2'],
123
+ gray_prob=gray_noise_prob,
124
+ clip=True,
125
+ rounds=False)
126
+
127
+ # JPEG compression + the final sinc filter
128
+ # We also need to resize images to desired sizes. We group [resize back + sinc filter] together
129
+ # as one operation.
130
+ # We consider two orders:
131
+ # 1. [resize back + sinc filter] + JPEG compression
132
+ # 2. JPEG compression + [resize back + sinc filter]
133
+ # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
134
+ if np.random.uniform() < 0.5:
135
+ # resize back + the final sinc filter
136
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
137
+ out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
138
+ out = filter2D(out, self.sinc_kernel)
139
+ # JPEG compression
140
+ jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
141
+ out = torch.clamp(out, 0, 1)
142
+ out = self.jpeger(out, quality=jpeg_p)
143
+ else:
144
+ # JPEG compression
145
+ jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
146
+ out = torch.clamp(out, 0, 1)
147
+ out = self.jpeger(out, quality=jpeg_p)
148
+ # resize back + the final sinc filter
149
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
150
+ out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
151
+ out = filter2D(out, self.sinc_kernel)
152
+
153
+ # clamp and round
154
+ self.lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
155
+
156
+ # random crop
157
+ gt_size = self.opt['gt_size']
158
+ (self.gt, self.gt_usm), self.lq = paired_random_crop([self.gt, self.gt_usm], self.lq, gt_size,
159
+ self.opt['scale'])
160
+
161
+ # training pair pool
162
+ self._dequeue_and_enqueue()
163
+ # sharpen self.gt again, as we have changed the self.gt with self._dequeue_and_enqueue
164
+ self.gt_usm = self.usm_sharpener(self.gt)
165
+ else:
166
+ self.lq = data['lq'].to(self.device)
167
+ if 'gt' in data:
168
+ self.gt = data['gt'].to(self.device)
169
+
170
+ def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
171
+ # do not use the synthetic process during validation
172
+ self.is_train = False
173
+ super(RealESRGANModel, self).nondist_validation(dataloader, current_iter, tb_logger, save_img)
174
+ self.is_train = True
175
+
176
+ def optimize_parameters(self, current_iter):
177
+ l1_gt = self.gt_usm
178
+ percep_gt = self.gt_usm
179
+ gan_gt = self.gt_usm
180
+ if self.opt['l1_gt_usm'] is False:
181
+ l1_gt = self.gt
182
+ if self.opt['percep_gt_usm'] is False:
183
+ percep_gt = self.gt
184
+ if self.opt['gan_gt_usm'] is False:
185
+ gan_gt = self.gt
186
+
187
+ # optimize net_g
188
+ for p in self.net_d.parameters():
189
+ p.requires_grad = False
190
+
191
+ self.optimizer_g.zero_grad()
192
+ self.output = self.net_g(self.lq)
193
+
194
+ l_g_total = 0
195
+ loss_dict = OrderedDict()
196
+ if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters):
197
+ # pixel loss
198
+ if self.cri_pix:
199
+ l_g_pix = self.cri_pix(self.output, l1_gt)
200
+ l_g_total += l_g_pix
201
+ loss_dict['l_g_pix'] = l_g_pix
202
+ # perceptual loss
203
+ if self.cri_perceptual:
204
+ l_g_percep, l_g_style = self.cri_perceptual(self.output, percep_gt)
205
+ if l_g_percep is not None:
206
+ l_g_total += l_g_percep
207
+ loss_dict['l_g_percep'] = l_g_percep
208
+ if l_g_style is not None:
209
+ l_g_total += l_g_style
210
+ loss_dict['l_g_style'] = l_g_style
211
+ # gan loss
212
+ fake_g_pred = self.net_d(self.output)
213
+ l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
214
+ l_g_total += l_g_gan
215
+ loss_dict['l_g_gan'] = l_g_gan
216
+
217
+ l_g_total.backward()
218
+ self.optimizer_g.step()
219
+
220
+ # optimize net_d
221
+ for p in self.net_d.parameters():
222
+ p.requires_grad = True
223
+
224
+ self.optimizer_d.zero_grad()
225
+ # real
226
+ real_d_pred = self.net_d(gan_gt)
227
+ l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
228
+ loss_dict['l_d_real'] = l_d_real
229
+ loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
230
+ l_d_real.backward()
231
+ # fake
232
+ fake_d_pred = self.net_d(self.output.detach().clone()) # clone for pt1.9
233
+ l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
234
+ loss_dict['l_d_fake'] = l_d_fake
235
+ loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
236
+ l_d_fake.backward()
237
+ self.optimizer_d.step()
238
+
239
+ if self.ema_decay > 0:
240
+ self.model_ema(decay=self.ema_decay)
241
+
242
+ self.log_dict = self.reduce_loss_dict(loss_dict)
realesrgan/models/realesrnet_model.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import torch
4
+ from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
5
+ from basicsr.data.transforms import paired_random_crop
6
+ from basicsr.models.sr_model import SRModel
7
+ from basicsr.utils import DiffJPEG, USMSharp
8
+ from basicsr.utils.img_process_util import filter2D
9
+ from basicsr.utils.registry import MODEL_REGISTRY
10
+ from torch.nn import functional as F
11
+
12
+
13
+ @MODEL_REGISTRY.register()
14
+ class RealESRNetModel(SRModel):
15
+ """RealESRNet Model"""
16
+
17
+ def __init__(self, opt):
18
+ super(RealESRNetModel, self).__init__(opt)
19
+ self.jpeger = DiffJPEG(differentiable=False).cuda()
20
+ self.usm_sharpener = USMSharp().cuda()
21
+ self.queue_size = opt['queue_size']
22
+
23
+ @torch.no_grad()
24
+ def _dequeue_and_enqueue(self):
25
+ # training pair pool
26
+ # initialize
27
+ b, c, h, w = self.lq.size()
28
+ if not hasattr(self, 'queue_lr'):
29
+ assert self.queue_size % b == 0, 'queue size should be divisible by batch size'
30
+ self.queue_lr = torch.zeros(self.queue_size, c, h, w).cuda()
31
+ _, c, h, w = self.gt.size()
32
+ self.queue_gt = torch.zeros(self.queue_size, c, h, w).cuda()
33
+ self.queue_ptr = 0
34
+ if self.queue_ptr == self.queue_size: # full
35
+ # do dequeue and enqueue
36
+ # shuffle
37
+ idx = torch.randperm(self.queue_size)
38
+ self.queue_lr = self.queue_lr[idx]
39
+ self.queue_gt = self.queue_gt[idx]
40
+ # get
41
+ lq_dequeue = self.queue_lr[0:b, :, :, :].clone()
42
+ gt_dequeue = self.queue_gt[0:b, :, :, :].clone()
43
+ # update
44
+ self.queue_lr[0:b, :, :, :] = self.lq.clone()
45
+ self.queue_gt[0:b, :, :, :] = self.gt.clone()
46
+
47
+ self.lq = lq_dequeue
48
+ self.gt = gt_dequeue
49
+ else:
50
+ # only do enqueue
51
+ self.queue_lr[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.lq.clone()
52
+ self.queue_gt[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.gt.clone()
53
+ self.queue_ptr = self.queue_ptr + b
54
+
55
+ @torch.no_grad()
56
+ def feed_data(self, data):
57
+ if self.is_train:
58
+ # training data synthesis
59
+ self.gt = data['gt'].to(self.device)
60
+ # USM the GT images
61
+ if self.opt['gt_usm'] is True:
62
+ self.gt = self.usm_sharpener(self.gt)
63
+
64
+ self.kernel1 = data['kernel1'].to(self.device)
65
+ self.kernel2 = data['kernel2'].to(self.device)
66
+ self.sinc_kernel = data['sinc_kernel'].to(self.device)
67
+
68
+ ori_h, ori_w = self.gt.size()[2:4]
69
+
70
+ # ----------------------- The first degradation process ----------------------- #
71
+ # blur
72
+ out = filter2D(self.gt, self.kernel1)
73
+ # random resize
74
+ updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob'])[0]
75
+ if updown_type == 'up':
76
+ scale = np.random.uniform(1, self.opt['resize_range'][1])
77
+ elif updown_type == 'down':
78
+ scale = np.random.uniform(self.opt['resize_range'][0], 1)
79
+ else:
80
+ scale = 1
81
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
82
+ out = F.interpolate(out, scale_factor=scale, mode=mode)
83
+ # noise
84
+ gray_noise_prob = self.opt['gray_noise_prob']
85
+ if np.random.uniform() < self.opt['gaussian_noise_prob']:
86
+ out = random_add_gaussian_noise_pt(
87
+ out, sigma_range=self.opt['noise_range'], clip=True, rounds=False, gray_prob=gray_noise_prob)
88
+ else:
89
+ out = random_add_poisson_noise_pt(
90
+ out,
91
+ scale_range=self.opt['poisson_scale_range'],
92
+ gray_prob=gray_noise_prob,
93
+ clip=True,
94
+ rounds=False)
95
+ # JPEG compression
96
+ jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range'])
97
+ out = torch.clamp(out, 0, 1)
98
+ out = self.jpeger(out, quality=jpeg_p)
99
+
100
+ # ----------------------- The second degradation process ----------------------- #
101
+ # blur
102
+ if np.random.uniform() < self.opt['second_blur_prob']:
103
+ out = filter2D(out, self.kernel2)
104
+ # random resize
105
+ updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob2'])[0]
106
+ if updown_type == 'up':
107
+ scale = np.random.uniform(1, self.opt['resize_range2'][1])
108
+ elif updown_type == 'down':
109
+ scale = np.random.uniform(self.opt['resize_range2'][0], 1)
110
+ else:
111
+ scale = 1
112
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
113
+ out = F.interpolate(
114
+ out, size=(int(ori_h / self.opt['scale'] * scale), int(ori_w / self.opt['scale'] * scale)), mode=mode)
115
+ # noise
116
+ gray_noise_prob = self.opt['gray_noise_prob2']
117
+ if np.random.uniform() < self.opt['gaussian_noise_prob2']:
118
+ out = random_add_gaussian_noise_pt(
119
+ out, sigma_range=self.opt['noise_range2'], clip=True, rounds=False, gray_prob=gray_noise_prob)
120
+ else:
121
+ out = random_add_poisson_noise_pt(
122
+ out,
123
+ scale_range=self.opt['poisson_scale_range2'],
124
+ gray_prob=gray_noise_prob,
125
+ clip=True,
126
+ rounds=False)
127
+
128
+ # JPEG compression + the final sinc filter
129
+ # We also need to resize images to desired sizes. We group [resize back + sinc filter] together
130
+ # as one operation.
131
+ # We consider two orders:
132
+ # 1. [resize back + sinc filter] + JPEG compression
133
+ # 2. JPEG compression + [resize back + sinc filter]
134
+ # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
135
+ if np.random.uniform() < 0.5:
136
+ # resize back + the final sinc filter
137
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
138
+ out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
139
+ out = filter2D(out, self.sinc_kernel)
140
+ # JPEG compression
141
+ jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
142
+ out = torch.clamp(out, 0, 1)
143
+ out = self.jpeger(out, quality=jpeg_p)
144
+ else:
145
+ # JPEG compression
146
+ jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
147
+ out = torch.clamp(out, 0, 1)
148
+ out = self.jpeger(out, quality=jpeg_p)
149
+ # resize back + the final sinc filter
150
+ mode = random.choice(['area', 'bilinear', 'bicubic'])
151
+ out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
152
+ out = filter2D(out, self.sinc_kernel)
153
+
154
+ # clamp and round
155
+ self.lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
156
+
157
+ # random crop
158
+ gt_size = self.opt['gt_size']
159
+ self.gt, self.lq = paired_random_crop(self.gt, self.lq, gt_size, self.opt['scale'])
160
+
161
+ # training pair pool
162
+ self._dequeue_and_enqueue()
163
+ else:
164
+ self.lq = data['lq'].to(self.device)
165
+ if 'gt' in data:
166
+ self.gt = data['gt'].to(self.device)
167
+
168
+ def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
169
+ # do not use the synthetic process during validation
170
+ self.is_train = False
171
+ super(RealESRNetModel, self).nondist_validation(dataloader, current_iter, tb_logger, save_img)
172
+ self.is_train = True
realesrgan/train.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+ import os.path as osp
3
+ from basicsr.train import train_pipeline
4
+
5
+ import realesrgan.archs
6
+ import realesrgan.data
7
+ import realesrgan.models
8
+
9
+ if __name__ == '__main__':
10
+ root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
11
+ train_pipeline(root_path)
realesrgan/utils.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import os
5
+ import torch
6
+ from basicsr.archs.rrdbnet_arch import RRDBNet
7
+ from torch.hub import download_url_to_file, get_dir
8
+ from torch.nn import functional as F
9
+ from urllib.parse import urlparse
10
+
11
+ ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
12
+
13
+
14
+ class RealESRGANer():
15
+
16
+ def __init__(self, scale, model_path, tile=0, tile_pad=10, pre_pad=10, half=False):
17
+ self.scale = scale
18
+ self.tile_size = tile
19
+ self.tile_pad = tile_pad
20
+ self.pre_pad = pre_pad
21
+ self.mod_scale = None
22
+ self.half = half
23
+
24
+ # initialize model
25
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
26
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=scale)
27
+
28
+ if model_path.startswith('https://'):
29
+ model_path = load_file_from_url(
30
+ url=model_path, model_dir='realesrgan/weights', progress=True, file_name=None)
31
+ loadnet = torch.load(model_path)
32
+ if 'params_ema' in loadnet:
33
+ keyname = 'params_ema'
34
+ else:
35
+ keyname = 'params'
36
+ model.load_state_dict(loadnet[keyname], strict=True)
37
+ model.eval()
38
+ self.model = model.to(self.device)
39
+ if self.half:
40
+ self.model = self.model.half()
41
+
42
+ def pre_process(self, img):
43
+ img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
44
+ self.img = img.unsqueeze(0).to(self.device)
45
+ if self.half:
46
+ self.img = self.img.half()
47
+
48
+ # pre_pad
49
+ if self.pre_pad != 0:
50
+ self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
51
+ # mod pad
52
+ if self.scale == 2:
53
+ self.mod_scale = 2
54
+ elif self.scale == 1:
55
+ self.mod_scale = 4
56
+ if self.mod_scale is not None:
57
+ self.mod_pad_h, self.mod_pad_w = 0, 0
58
+ _, _, h, w = self.img.size()
59
+ if (h % self.mod_scale != 0):
60
+ self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
61
+ if (w % self.mod_scale != 0):
62
+ self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
63
+ self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
64
+
65
+ def process(self):
66
+ self.output = self.model(self.img)
67
+
68
+ def tile_process(self):
69
+ """Modified from: https://github.com/ata4/esrgan-launcher
70
+ """
71
+ batch, channel, height, width = self.img.shape
72
+ output_height = height * self.scale
73
+ output_width = width * self.scale
74
+ output_shape = (batch, channel, output_height, output_width)
75
+
76
+ # start with black image
77
+ self.output = self.img.new_zeros(output_shape)
78
+ tiles_x = math.ceil(width / self.tile_size)
79
+ tiles_y = math.ceil(height / self.tile_size)
80
+
81
+ # loop over all tiles
82
+ for y in range(tiles_y):
83
+ for x in range(tiles_x):
84
+ # extract tile from input image
85
+ ofs_x = x * self.tile_size
86
+ ofs_y = y * self.tile_size
87
+ # input tile area on total image
88
+ input_start_x = ofs_x
89
+ input_end_x = min(ofs_x + self.tile_size, width)
90
+ input_start_y = ofs_y
91
+ input_end_y = min(ofs_y + self.tile_size, height)
92
+
93
+ # input tile area on total image with padding
94
+ input_start_x_pad = max(input_start_x - self.tile_pad, 0)
95
+ input_end_x_pad = min(input_end_x + self.tile_pad, width)
96
+ input_start_y_pad = max(input_start_y - self.tile_pad, 0)
97
+ input_end_y_pad = min(input_end_y + self.tile_pad, height)
98
+
99
+ # input tile dimensions
100
+ input_tile_width = input_end_x - input_start_x
101
+ input_tile_height = input_end_y - input_start_y
102
+ tile_idx = y * tiles_x + x + 1
103
+ input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
104
+
105
+ # upscale tile
106
+ try:
107
+ with torch.no_grad():
108
+ output_tile = self.model(input_tile)
109
+ except Exception as error:
110
+ print('Error', error)
111
+ print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
112
+
113
+ # output tile area on total image
114
+ output_start_x = input_start_x * self.scale
115
+ output_end_x = input_end_x * self.scale
116
+ output_start_y = input_start_y * self.scale
117
+ output_end_y = input_end_y * self.scale
118
+
119
+ # output tile area without padding
120
+ output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
121
+ output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
122
+ output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
123
+ output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
124
+
125
+ # put tile into output image
126
+ self.output[:, :, output_start_y:output_end_y,
127
+ output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
128
+ output_start_x_tile:output_end_x_tile]
129
+
130
+ def post_process(self):
131
+ # remove extra pad
132
+ if self.mod_scale is not None:
133
+ _, _, h, w = self.output.size()
134
+ self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
135
+ # remove prepad
136
+ if self.pre_pad != 0:
137
+ _, _, h, w = self.output.size()
138
+ self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
139
+ return self.output
140
+
141
+ @torch.no_grad()
142
+ def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
143
+ h_input, w_input = img.shape[0:2]
144
+ # img: numpy
145
+ img = img.astype(np.float32)
146
+ if np.max(img) > 255: # 16-bit image
147
+ max_range = 65535
148
+ print('\tInput is a 16-bit image')
149
+ else:
150
+ max_range = 255
151
+ img = img / max_range
152
+ if len(img.shape) == 2: # gray image
153
+ img_mode = 'L'
154
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
155
+ elif img.shape[2] == 4: # RGBA image with alpha channel
156
+ img_mode = 'RGBA'
157
+ alpha = img[:, :, 3]
158
+ img = img[:, :, 0:3]
159
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
160
+ if alpha_upsampler == 'realesrgan':
161
+ alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
162
+ else:
163
+ img_mode = 'RGB'
164
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
165
+
166
+ # ------------------- process image (without the alpha channel) ------------------- #
167
+ self.pre_process(img)
168
+ if self.tile_size > 0:
169
+ self.tile_process()
170
+ else:
171
+ self.process()
172
+ output_img = self.post_process()
173
+ output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
174
+ output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
175
+ if img_mode == 'L':
176
+ output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
177
+
178
+ # ------------------- process the alpha channel if necessary ------------------- #
179
+ if img_mode == 'RGBA':
180
+ if alpha_upsampler == 'realesrgan':
181
+ self.pre_process(alpha)
182
+ if self.tile_size > 0:
183
+ self.tile_process()
184
+ else:
185
+ self.process()
186
+ output_alpha = self.post_process()
187
+ output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
188
+ output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
189
+ output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
190
+ else:
191
+ h, w = alpha.shape[0:2]
192
+ output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
193
+
194
+ # merge the alpha channel
195
+ output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
196
+ output_img[:, :, 3] = output_alpha
197
+
198
+ # ------------------------------ return ------------------------------ #
199
+ if max_range == 65535: # 16-bit image
200
+ output = (output_img * 65535.0).round().astype(np.uint16)
201
+ else:
202
+ output = (output_img * 255.0).round().astype(np.uint8)
203
+
204
+ if outscale is not None and outscale != float(self.scale):
205
+ output = cv2.resize(
206
+ output, (
207
+ int(w_input * outscale),
208
+ int(h_input * outscale),
209
+ ), interpolation=cv2.INTER_LANCZOS4)
210
+
211
+ return output, img_mode
212
+
213
+
214
+ def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
215
+ """Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
216
+ """
217
+ if model_dir is None:
218
+ hub_dir = get_dir()
219
+ model_dir = os.path.join(hub_dir, 'checkpoints')
220
+
221
+ os.makedirs(os.path.join(ROOT_DIR, model_dir), exist_ok=True)
222
+
223
+ parts = urlparse(url)
224
+ filename = os.path.basename(parts.path)
225
+ if file_name is not None:
226
+ filename = file_name
227
+ cached_file = os.path.abspath(os.path.join(ROOT_DIR, model_dir, filename))
228
+ if not os.path.exists(cached_file):
229
+ print(f'Downloading: "{url}" to {cached_file}\n')
230
+ download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
231
+ return cached_file
realesrgan/weights/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Weights
2
+
3
+ Put the downloaded weights to this folder.
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ basicsr
2
+ numpy
3
+ opencv-python
4
+ torch>=1.7
scripts/pytorch2onnx.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.onnx
3
+ from basicsr.archs.rrdbnet_arch import RRDBNet
4
+
5
+ # An instance of your model
6
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32)
7
+ model.load_state_dict(torch.load('experiments/pretrained_models/RealESRGAN_x4plus.pth')['params_ema'])
8
+ # set the train mode to false since we will only run the forward pass.
9
+ model.train(False)
10
+ model.cpu().eval()
11
+
12
+ # An example input you would normally provide to your model's forward() method
13
+ x = torch.rand(1, 3, 64, 64)
14
+
15
+ # Export the model
16
+ with torch.no_grad():
17
+ torch_out = torch.onnx._export(model, x, 'realesrgan-x4.onnx', opset_version=11, export_params=True)
setup.cfg ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [flake8]
2
+ ignore =
3
+ # line break before binary operator (W503)
4
+ W503,
5
+ # line break after binary operator (W504)
6
+ W504,
7
+ max-line-length=120
8
+
9
+ [yapf]
10
+ based_on_style = pep8
11
+ column_limit = 120
12
+ blank_line_before_nested_class_or_def = true
13
+ split_before_expression_after_opening_paren = true
14
+
15
+ [isort]
16
+ line_length = 120
17
+ multi_line_output = 0
18
+ known_standard_library = pkg_resources,setuptools
19
+ known_first_party = realesrgan
20
+ known_third_party = basicsr,cv2,numpy,torch
21
+ no_lines_before = STDLIB,LOCALFOLDER
22
+ default_section = THIRDPARTY
setup.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ from setuptools import find_packages, setup
4
+
5
+ import os
6
+ import subprocess
7
+ import time
8
+
9
+ version_file = 'realesrgan/version.py'
10
+
11
+
12
+ def readme():
13
+ with open('README.md', encoding='utf-8') as f:
14
+ content = f.read()
15
+ return content
16
+
17
+
18
+ def get_git_hash():
19
+
20
+ def _minimal_ext_cmd(cmd):
21
+ # construct minimal environment
22
+ env = {}
23
+ for k in ['SYSTEMROOT', 'PATH', 'HOME']:
24
+ v = os.environ.get(k)
25
+ if v is not None:
26
+ env[k] = v
27
+ # LANGUAGE is used on win32
28
+ env['LANGUAGE'] = 'C'
29
+ env['LANG'] = 'C'
30
+ env['LC_ALL'] = 'C'
31
+ out = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=env).communicate()[0]
32
+ return out
33
+
34
+ try:
35
+ out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD'])
36
+ sha = out.strip().decode('ascii')
37
+ except OSError:
38
+ sha = 'unknown'
39
+
40
+ return sha
41
+
42
+
43
+ def get_hash():
44
+ if os.path.exists('.git'):
45
+ sha = get_git_hash()[:7]
46
+ elif os.path.exists(version_file):
47
+ try:
48
+ from facexlib.version import __version__
49
+ sha = __version__.split('+')[-1]
50
+ except ImportError:
51
+ raise ImportError('Unable to get git version')
52
+ else:
53
+ sha = 'unknown'
54
+
55
+ return sha
56
+
57
+
58
+ def write_version_py():
59
+ content = """# GENERATED VERSION FILE
60
+ # TIME: {}
61
+ __version__ = '{}'
62
+ __gitsha__ = '{}'
63
+ version_info = ({})
64
+ """
65
+ sha = get_hash()
66
+ with open('VERSION', 'r') as f:
67
+ SHORT_VERSION = f.read().strip()
68
+ VERSION_INFO = ', '.join([x if x.isdigit() else f'"{x}"' for x in SHORT_VERSION.split('.')])
69
+
70
+ version_file_str = content.format(time.asctime(), SHORT_VERSION, sha, VERSION_INFO)
71
+ with open(version_file, 'w') as f:
72
+ f.write(version_file_str)
73
+
74
+
75
+ def get_version():
76
+ with open(version_file, 'r') as f:
77
+ exec(compile(f.read(), version_file, 'exec'))
78
+ return locals()['__version__']
79
+
80
+
81
+ def get_requirements(filename='requirements.txt'):
82
+ here = os.path.dirname(os.path.realpath(__file__))
83
+ with open(os.path.join(here, filename), 'r') as f:
84
+ requires = [line.replace('\n', '') for line in f.readlines()]
85
+ return requires
86
+
87
+
88
+ if __name__ == '__main__':
89
+ write_version_py()
90
+ setup(
91
+ name='realesrgan',
92
+ version=get_version(),
93
+ description='Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration',
94
+ long_description=readme(),
95
+ long_description_content_type='text/markdown',
96
+ author='Xintao Wang',
97
+ author_email='[email protected]',
98
+ keywords='computer vision, pytorch, image restoration, super-resolution, esrgan, real-esrgan',
99
+ url='https://github.com/xinntao/Real-ESRGAN',
100
+ include_package_data=True,
101
+ packages=find_packages(exclude=('options', 'datasets', 'experiments', 'results', 'tb_logger', 'wandb')),
102
+ classifiers=[
103
+ 'Development Status :: 4 - Beta',
104
+ 'License :: OSI Approved :: Apache Software License',
105
+ 'Operating System :: OS Independent',
106
+ 'Programming Language :: Python :: 3',
107
+ 'Programming Language :: Python :: 3.7',
108
+ 'Programming Language :: Python :: 3.8',
109
+ ],
110
+ license='BSD-3-Clause License',
111
+ setup_requires=['cython', 'numpy'],
112
+ install_requires=get_requirements(),
113
+ zip_safe=False)