|
import os |
|
import gradio as gr |
|
from PIL import Image |
|
import torch |
|
|
|
|
|
os.system('wget https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth -P experiments/pretrained_models') |
|
|
|
def inference(img): |
|
os.system('mkdir test') |
|
img.save("test/1.jpg", "JPEG") |
|
os.system('python main_test_swinir.py --task real_sr --model_path experiments/pretrained_models/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth --folder_lq test --scale 4') |
|
return 'results/swinir_real_sr_x4/1_SwinIR.png' |
|
|
|
title = "SwinIR" |
|
description = "Gradio demo for SwinIR. SwinIR achieves state-of-the-art performance on six tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. See the paper and project page for detailed results below. Here, we provide a demo for real-world image SR.To use it, simply upload your image, or click one of the examples to load them." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.10257' target='_blank'>SwinIR: Image Restoration Using Swin Transformer</a> | <a href='https://github.com/JingyunLiang/SwinIR' target='_blank'>Github Repo</a></p>" |
|
|
|
examples=[['ETH_LR.png']] |
|
gr.Interface( |
|
inference, |
|
[gr.inputs.Image(type="pil", label="Input")], |
|
gr.outputs.Image(type="file", label="Output"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
enable_queue=True, |
|
examples=examples |
|
).launch(debug=True) |