import os import gradio as gr from PIL import Image import torch os.system('wget https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth -P experiments/pretrained_models') def inference(img): os.system('mkdir test') basewidth = 256 wpercent = (basewidth/float(img.size[0])) hsize = int((float(img.size[1])*float(wpercent))) img = img.resize((basewidth,hsize), Image.ANTIALIAS) img.save("test/1.jpg", "JPEG") os.system('python main_test_swinir.py --task real_sr --model_path experiments/pretrained_models/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth --folder_lq test --scale 4') return 'results/swinir_real_sr_x4/1_SwinIR.png' title = "SwinIR" description = "Gradio demo for SwinIR. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

SwinIR: Image Restoration Using Swin Transformer | Github Repo

" gr.Interface( inference, [gr.inputs.Image(type="pil", label="Input")], gr.outputs.Image(type="file", label="Output"), title=title, description=description, article=article, enable_queue=True ).launch(debug=True)