NickoSELI commited on
Commit
a5dda79
1 Parent(s): 30b3101

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -0
app.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoProcessor
3
+
4
+ # Load the model and processor from HF Hub
5
+ model_name = "NickoSELI/blip2-indian-food-captioning-private-checkopt-mock1"
6
+ model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=True)
7
+ processor = AutoProcessor.from_pretrained(model_name, use_auth_token=True)
8
+
9
+ # Define a prediction function
10
+ def predict(image):
11
+ inputs = processor(images=image, return_tensors="pt")
12
+ outputs = model.generate(**inputs)
13
+ caption = processor.decode(outputs[0], skip_special_tokens=True)
14
+ return caption
15
+
16
+ # Create a Gradio interface
17
+ interface = gr.Interface(
18
+ fn=predict,
19
+ inputs=gr.inputs.Image(type="pil"),
20
+ outputs="text",
21
+ title="Indian Food Captioning Model"
22
+ )
23
+
24
+ # Launch the interface
25
+ if __name__ == "__main__":
26
+ interface.launch()