Nickofranco commited on
Commit
76fcb8d
·
verified ·
1 Parent(s): ff8a4e0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -151
app.py CHANGED
@@ -1,162 +1,46 @@
1
- import faicons as fa
2
- import plotly.express as px
 
 
 
3
 
4
- # Load data and compute static values
5
- from shared import app_dir, tips
6
- from shinywidgets import render_plotly
7
 
8
- from shiny import reactive, render
9
- from shiny.express import input, ui
10
 
11
- bill_rng = (min(tips.total_bill), max(tips.total_bill))
 
12
 
13
- # Add page title and sidebar
14
- ui.page_opts(title="Restaurant tipping", fillable=True)
15
 
16
- with ui.sidebar(open="desktop"):
17
- ui.input_slider(
18
- "total_bill",
19
- "Bill amount",
20
- min=bill_rng[0],
21
- max=bill_rng[1],
22
- value=bill_rng,
23
- pre="$",
24
- )
25
- ui.input_checkbox_group(
26
- "time",
27
- "Food service",
28
- ["Lunch", "Dinner"],
29
- selected=["Lunch", "Dinner"],
30
- inline=True,
31
- )
32
- ui.input_action_button("reset", "Reset filter")
33
 
34
- # Add main content
35
- ICONS = {
36
- "user": fa.icon_svg("user", "regular"),
37
- "wallet": fa.icon_svg("wallet"),
38
- "currency-dollar": fa.icon_svg("dollar-sign"),
39
- "ellipsis": fa.icon_svg("ellipsis"),
40
- }
41
 
42
- with ui.layout_columns(fill=False):
43
- with ui.value_box(showcase=ICONS["user"]):
44
- "Total tippers"
 
 
 
 
 
 
 
45
 
46
- @render.express
47
- def total_tippers():
48
- tips_data().shape[0]
49
 
50
- with ui.value_box(showcase=ICONS["wallet"]):
51
- "Average tip"
 
52
 
53
- @render.express
54
- def average_tip():
55
- d = tips_data()
56
- if d.shape[0] > 0:
57
- perc = d.tip / d.total_bill
58
- f"{perc.mean():.1%}"
59
 
60
- with ui.value_box(showcase=ICONS["currency-dollar"]):
61
- "Average bill"
62
-
63
- @render.express
64
- def average_bill():
65
- d = tips_data()
66
- if d.shape[0] > 0:
67
- bill = d.total_bill.mean()
68
- f"${bill:.2f}"
69
-
70
-
71
- with ui.layout_columns(col_widths=[6, 6, 12]):
72
- with ui.card(full_screen=True):
73
- ui.card_header("Tips data")
74
-
75
- @render.data_frame
76
- def table():
77
- return render.DataGrid(tips_data())
78
-
79
- with ui.card(full_screen=True):
80
- with ui.card_header(class_="d-flex justify-content-between align-items-center"):
81
- "Total bill vs tip"
82
- with ui.popover(title="Add a color variable", placement="top"):
83
- ICONS["ellipsis"]
84
- ui.input_radio_buttons(
85
- "scatter_color",
86
- None,
87
- ["none", "sex", "smoker", "day", "time"],
88
- inline=True,
89
- )
90
-
91
- @render_plotly
92
- def scatterplot():
93
- color = input.scatter_color()
94
- return px.scatter(
95
- tips_data(),
96
- x="total_bill",
97
- y="tip",
98
- color=None if color == "none" else color,
99
- trendline="lowess",
100
- )
101
-
102
- with ui.card(full_screen=True):
103
- with ui.card_header(class_="d-flex justify-content-between align-items-center"):
104
- "Tip percentages"
105
- with ui.popover(title="Add a color variable"):
106
- ICONS["ellipsis"]
107
- ui.input_radio_buttons(
108
- "tip_perc_y",
109
- "Split by:",
110
- ["sex", "smoker", "day", "time"],
111
- selected="day",
112
- inline=True,
113
- )
114
-
115
- @render_plotly
116
- def tip_perc():
117
- from ridgeplot import ridgeplot
118
-
119
- dat = tips_data()
120
- dat["percent"] = dat.tip / dat.total_bill
121
- yvar = input.tip_perc_y()
122
- uvals = dat[yvar].unique()
123
-
124
- samples = [[dat.percent[dat[yvar] == val]] for val in uvals]
125
-
126
- plt = ridgeplot(
127
- samples=samples,
128
- labels=uvals,
129
- bandwidth=0.01,
130
- colorscale="viridis",
131
- colormode="row-index",
132
- )
133
-
134
- plt.update_layout(
135
- legend=dict(
136
- orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5
137
- )
138
- )
139
-
140
- return plt
141
-
142
-
143
- ui.include_css(app_dir / "styles.css")
144
-
145
- # --------------------------------------------------------
146
- # Reactive calculations and effects
147
- # --------------------------------------------------------
148
-
149
-
150
- @reactive.calc
151
- def tips_data():
152
- bill = input.total_bill()
153
- idx1 = tips.total_bill.between(bill[0], bill[1])
154
- idx2 = tips.time.isin(input.time())
155
- return tips[idx1 & idx2]
156
-
157
-
158
- @reactive.effect
159
- @reactive.event(input.reset)
160
- def _():
161
- ui.update_slider("total_bill", value=bill_rng)
162
- ui.update_checkbox_group("time", selected=["Lunch", "Dinner"])
 
1
+ from fastapi import FastAPI
2
+ from pydantic import BaseModel
3
+ from typing import List
4
+ from transformers import AutoModel, AutoTokenizer
5
+ import torch
6
 
7
+ app = FastAPI()
 
 
8
 
9
+ MODEL_NAME = "deepseek-ai/DeepSeek-R1-0528"
 
10
 
11
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
12
+ model = AutoModel.from_pretrained(MODEL_NAME).eval()
13
 
14
+ if torch.cuda.is_available():
15
+ model = model.cuda()
16
 
17
+ class Message(BaseModel):
18
+ role: str # "user" or "assistant"
19
+ content: str
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ class ChatRequest(BaseModel):
22
+ messages: List[Message]
 
 
 
 
 
23
 
24
+ @app.post("/chat")
25
+ async def chat_endpoint(request: ChatRequest):
26
+ # Build the prompt with conversation history
27
+ input_text = ""
28
+ for msg in request.messages:
29
+ if msg.role == "user":
30
+ input_text += f"User: {msg.content}\n"
31
+ elif msg.role == "assistant":
32
+ input_text += f"Assistant: {msg.content}\n"
33
+ input_text += "Assistant:"
34
 
35
+ inputs = tokenizer(input_text, return_tensors="pt")
36
+ if torch.cuda.is_available():
37
+ inputs = {k: v.cuda() for k, v in inputs.items()}
38
 
39
+ with torch.no_grad():
40
+ outputs = model.generate(**inputs, max_length=200)
41
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
42
 
43
+ # Extract assistant reply only
44
+ reply = response.split("Assistant:")[-1].strip()
 
 
 
 
45
 
46
+ return {"reply": reply}