Nicole-M commited on
Commit
68b9c58
·
verified ·
1 Parent(s): e6d1096

First commit of app.py

Browse files

This is the hosted inference engine for the fine-tuned ViT model on approximately 35k images of Mammograms from the Mammogram V1 dataset.

Files changed (1) hide show
  1. app.py +20 -0
app.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForImageClassification, Trainer, ViTImageProcessor, ViTForImageClassification, pipeline, AutoImageProcessor
3
+ from torchvision import transforms
4
+
5
+ model = AutoModelForImageClassification.from_pretrained("Nicole-M/Dataset1-ViT")
6
+ image_processor = AutoImageProcessor.from_pretrained("Nicole-M/Dataset1-ViT")
7
+ clf = pipeline(model=model, task="image-classification", image_processor=image_processor)
8
+
9
+ class_names = ['Benign', 'Malignant']
10
+
11
+ def predict_image(img):
12
+ img=img.reshape(224,224,3)
13
+ img = transforms.ToPILImage()(img)
14
+ prediction=clf.predict(img)
15
+ return {class_names[i]: float(prediction[i]["score"]) for i in range(2)}
16
+
17
+ image = gr.inputs.Image(shape=(224,224))
18
+ label = gr.outputs.Label(num_top_classes=2)
19
+
20
+ gr.Interface(fn=predict_image, inputs=image, outputs=label,interpretation='default').launch()