File size: 5,692 Bytes
ec3584e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import time
import streamlit as st
from qa_loader import load_qa_and_create_vectorstore
from rag_chain import generate_response
from dotenv import load_dotenv
import asyncio

try:
    asyncio.get_running_loop()
except RuntimeError:
    asyncio.set_event_loop(asyncio.new_event_loop())
    
# 🔹 Load environment variables
load_dotenv()

# 🔹 Minimal CSS - sadece mesaj balonları için gerekli olan
def load_css():
    st.markdown("""
    <style>
        /* WhatsApp benzeri mesaj balonları */
        .message {
            display: flex;
            margin-bottom: 10px;
        }
        
        .message-user {
            justify-content: flex-end;
        }
        
        .message-assistant {
            justify-content: flex-start;
        }
        
        .message-content {
            padding: 10px 15px;
            border-radius: 18px;
            max-width: 70%;
            word-wrap: break-word;
        }
        
        .user-content {
            border: 1px solid #E5E7EB;
            border-bottom-right-radius: 5px;
        }
        
        .assistant-content {
            border: 1px solid #E5E7EB;
            border-bottom-left-radius: 5px;
        }
        
        .timestamp {
            font-size: 0.7rem;
            color: #64748B;
            margin-top: 2px;
            text-align: right;
        }
        
        .empty-chat {
            display: flex;
            flex-direction: column;
            align-items: center;
            justify-content: center;
            height: 50vh;
            color: #64748B;
        }
        
        .empty-chat img {
            width: 100px;
            margin-bottom: 20px;
            opacity: 0.7;
        }
    </style>
    """, unsafe_allow_html=True)

# 🔹 Streamlit Page Configuration
st.set_page_config(
    page_title="University AI Assistant", 
    page_icon="🎓",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Load minimal CSS
load_css()

# 🔹 Sidebar with information
with st.sidebar:
    st.image("logo.png", width=200)
    
    st.markdown("### ℹ️ About")
    st.markdown("""
    This AI assistant helps answer questions about Vistula University.
    Ask anything about admissions, courses, campus life, and more!
    """)
    
    st.markdown("### 🔗 Quick Links")
    st.markdown("[University Website](https://www.vistula.edu.pl/en)")
    st.markdown("[Student Portal](https://www.vistula.edu.pl/en/students)")
    st.markdown("[Contact Us](https://www.vistula.edu.pl/en/contact)")

# 🔹 Main content area
st.title("🎓 University AI Assistant")
st.subheader("Your personal guide to university information. Ask me anything!")

# 🔹 Retrieve Data (Cached for Performance)
@st.cache_resource
def get_retriever():
    return load_qa_and_create_vectorstore()

retriever = get_retriever()

if isinstance(retriever, tuple):  
    retriever = retriever[0]

# 🔹 Start or Load Chat History
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []

if "query" not in st.session_state:
    st.session_state.query = ""

if "processing_done" not in st.session_state:
    st.session_state.processing_done = False

# 🔹 Display Chat History in WhatsApp style
st.markdown("<div class='chat-container'>", unsafe_allow_html=True)

if not st.session_state.chat_history:
    st.markdown("""
    <div class="empty-chat">
        <img src="https://cdn-icons-png.flaticon.com/512/1041/1041916.png">
        <p>Start a conversation by asking a question below!</p>
    </div>
    """, unsafe_allow_html=True)
else:
    for entry in st.session_state.chat_history:
        # User message
        st.markdown(f"""
        <div class="message message-user">
            <div class="message-content user-content">
                {entry['question']}
                <div class="timestamp">You</div>
            </div>
        </div>
        """, unsafe_allow_html=True)
        
        # Assistant message
        st.markdown(f"""
        <div class="message message-assistant">
            <div class="message-content assistant-content">
                {entry['answer']}
                <div class="timestamp">Assistant</div>
            </div>
        </div>
        """, unsafe_allow_html=True)

st.markdown("</div>", unsafe_allow_html=True)

# 🔹 Form kullanarak giriş alanını ve gönderme işlemini yönet
with st.form(key="message_form", clear_on_submit=True):
    user_input = st.text_input("Type your message...", key="user_input")
    submit_button = st.form_submit_button("Send")

# Handle category selection from sidebar
if st.session_state.query:
    user_input = st.session_state.query
    st.session_state.query = ""  # Clear after using
    submit_button = True
else:
    submit_button = submit_button

# 🔹 Process When User Submits a Question
if submit_button and user_input and not st.session_state.processing_done:
    with st.spinner("🤖"):
        response = generate_response(retriever, user_input)
        
        # Add to chat history
        st.session_state.chat_history.append({
            "question": user_input,
            "answer": response
        })
        
        # Mark processing as done to prevent reprocessing
        st.session_state.processing_done = True
        
        # Force a rerun to update the UI
        st.rerun()

# Reset processing flag when input changes
if 'previous_input' not in st.session_state:
    st.session_state.previous_input = ""
    
if st.session_state.previous_input != user_input:
    st.session_state.processing_done = False
    st.session_state.previous_input = user_input


# 🔹 Footer
st.markdown("© 2025 University AI Assistant | Powered by AI")