Spaces:
Running
Running
File size: 1,304 Bytes
ec3584e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import json
import os
from langchain.schema import Document
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
# 📌 Gelişmiş embedding modeli (Daha iyi kelime eşleşmesi sağlar)
embedding_model = HuggingFaceEmbeddings(
model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1",
encode_kwargs={"normalize_embeddings": True}
)
# 📌 Q&A Verisini Yükle ve Böl
def load_qa_and_create_vectorstore():
with open("MyQ&A_cleaned.json", "r", encoding="utf-8") as f:
qa_data = json.load(f)
# 📌 Veriyi uygun formatta dönüştür
documents = [
Document(page_content=f"Question: {item['QUESTION']}\nAnswer: {item['ANSWER']}")
for item in qa_data
]
# 📌 Metinleri belirli parçalara ayırarak vektör veritabanına uygun hale getir
text_splitter = CharacterTextSplitter(chunk_size=800, chunk_overlap=200)
split_docs = text_splitter.split_documents(documents) # ✅ split_docs artık tanımlandı!
# 📌 ChromaDB'yi oluştur ve verileri sakla
vectordb = Chroma.from_documents(split_docs, embedding_model, persist_directory="./vistula_chroma")
return vectordb.as_retriever()
|