File size: 50,544 Bytes
6ecc7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
import logging
import math
import os
import random
import shutil
from pathlib import Path
from ADD.models.discriminator import ProjectedDiscriminator

import accelerate
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers

from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    StableDiffusionControlNetPipeline,
    UniPCMultistepScheduler,
)
from models.controlnet import ControlNetModel
from models.unet_2d_condition import UNet2DConditionModel
# from models.losses import LPIPSWithDiscriminator
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
from accelerate import DistributedDataParallelKwargs

from dataloaders.paired_dataset_txt import PairedCaptionDataset


from ADD.models.vit import vit_large, vit_small
import ADD.utils.util_net as util_net

if is_wandb_available():
    import wandb

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.21.0.dev0")

logger = get_logger(__name__)


def image_grid(imgs, rows, cols):
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


def log_validation(vae, text_encoder, tokenizer, unet, controlnet, args, accelerator, weight_dtype, step):
    logger.info("Running validation... ")

    controlnet = accelerator.unwrap_model(controlnet)

    pipeline = StableDiffusionControlNetPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        controlnet=controlnet,
        safety_checker=None,
        revision=args.revision,
        torch_dtype=weight_dtype,
    )
    pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    if args.enable_xformers_memory_efficient_attention:
        pipeline.enable_xformers_memory_efficient_attention()

    if args.seed is None:
        generator = None
    else:
        generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)

    if len(args.validation_image) == len(args.validation_prompt):
        validation_images = args.validation_image
        validation_prompts = args.validation_prompt
    elif len(args.validation_image) == 1:
        validation_images = args.validation_image * len(args.validation_prompt)
        validation_prompts = args.validation_prompt
    elif len(args.validation_prompt) == 1:
        validation_images = args.validation_image
        validation_prompts = args.validation_prompt * len(args.validation_image)
    else:
        raise ValueError(
            "number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
        )

    image_logs = []

    for validation_prompt, validation_image in zip(validation_prompts, validation_images):
        validation_image = Image.open(validation_image).convert("RGB")

        images = []

        for _ in range(args.num_validation_images):
            with torch.autocast("cuda"):
                image = pipeline(
                    validation_prompt, validation_image, num_inference_steps=20, generator=generator
                ).images[0]

            images.append(image)

        image_logs.append(
            {"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt}
        )

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            for log in image_logs:
                images = log["images"]
                validation_prompt = log["validation_prompt"]
                validation_image = log["validation_image"]

                formatted_images = []

                formatted_images.append(np.asarray(validation_image))

                for image in images:
                    formatted_images.append(np.asarray(image))

                formatted_images = np.stack(formatted_images)

                tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC")
        elif tracker.name == "wandb":
            formatted_images = []

            for log in image_logs:
                images = log["images"]
                validation_prompt = log["validation_prompt"]
                validation_image = log["validation_image"]

                formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))

                for image in images:
                    image = wandb.Image(image, caption=validation_prompt)
                    formatted_images.append(image)

            tracker.log({"validation": formatted_images})
        else:
            logger.warn(f"image logging not implemented for {tracker.name}")

        return image_logs


def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=revision,
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
    else:
        raise ValueError(f"{model_class} is not supported.")


def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None):
    img_str = ""
    if image_logs is not None:
        img_str = "You can find some example images below.\n"
        for i, log in enumerate(image_logs):
            images = log["images"]
            validation_prompt = log["validation_prompt"]
            validation_image = log["validation_image"]
            validation_image.save(os.path.join(repo_folder, "image_control.png"))
            img_str += f"prompt: {validation_prompt}\n"
            images = [validation_image] + images
            image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
            img_str += f"![images_{i})](./images_{i}.png)\n"

    yaml = f"""

---

license: creativeml-openrail-m

base_model: {base_model}

tags:

- stable-diffusion

- stable-diffusion-diffusers

- text-to-image

- diffusers

- controlnet

inference: true

---

    """
    model_card = f"""

# controlnet-{repo_id}



These are controlnet weights trained on {base_model} with new type of conditioning.

{img_str}

"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")


    parser.add_argument('--dataset_root_folders', type=str, default="")
    parser.add_argument("--is_module", action="store_true")
    parser.add_argument("--t_max", type=float, default=0.6666)
    parser.add_argument("--t_min", type=float, default=0.5)
    parser.add_argument("--num_inference_steps", type=int, default=1)
    parser.add_argument("--start_timesteps", type=int, default=999)

    parser.add_argument("--lambda_l2", type=float, default=1.0)
    parser.add_argument("--lambda_lpips", type=float, default=1.0)
    parser.add_argument("--lambda_disc", type=float, default=0.05)
    parser.add_argument("--lambda_disc_train", type=float, default=0.5)
    parser.add_argument("--begin_disc", type=float, default=100)

    parser.add_argument(
        "--is_start_lr",
        type=bool,
        default=True,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--vae_model_name_or_path",
        type=str,
        default='',
        help="Path to pretrained vae model."
        " If not specified vae weights are initialized from pre-trained model.",
    )
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default="",
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--controlnet_model_name_or_path",
        type=str,
        default='',
        help="Path to pretrained controlnet model."
        " If not specified controlnet weights are initialized from unet.",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="./experiments/test",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1000)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
        ),
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help=(
            "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
            " float32 precision."
        ),
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
    
    
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-5,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="fp16",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
    parser.add_argument(
        "--set_grads_to_none",
        action="store_true",
        help=(
            "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
            " behaviors, so disable this argument if it causes any problems. More info:"
            " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
        ),
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--image_column", type=str, default="image", help="The column of the dataset containing the target image."
    )
    parser.add_argument(
        "--conditioning_image_column",
        type=str,
        default="conditioning_image",
        help="The column of the dataset containing the controlnet conditioning image.",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default="text",
        help="The column of the dataset containing a caption or a list of captions.",
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        ),
    )
    parser.add_argument(
        "--proportion_empty_prompts",
        type=float,
        default=0,
        help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=[""],
        nargs="+",
        help=(
            "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
            " Provide either a matching number of `--validation_image`s, a single `--validation_image`"
            " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
        ),
    )
    parser.add_argument(
        "--validation_image",
        type=str,
        default=[""],
        nargs="+",
        help=(
            "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
            " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
            " a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
            " `--validation_image` that will be used with all `--validation_prompt`s."
        ),
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=100,
        help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=1,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
    parser.add_argument(
        "--tracker_project_name",
        type=str,
        default="train_ccsr_stage2",
        help=(
            "The `project_name` argument passed to Accelerator.init_trackers for"
            " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
        ),
    )

    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()
    
    if args.resolution % 8 != 0:
        raise ValueError(
            "`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder."
        )

    return args

def previous_timestep(timestep):
    if noise_scheduler.custom_timesteps:
        index = (noise_scheduler.timesteps == timestep).nonzero(as_tuple=True)[0][0]
        if index == noise_scheduler.timesteps.shape[0] - 1:
            prev_t = torch.tensor(-1)
        else:
            prev_t = noise_scheduler.timesteps[index + 1]
    else:
        num_inference_steps = (
            noise_scheduler.num_inference_steps if noise_scheduler.num_inference_steps else noise_scheduler.config.num_train_timesteps
        )
        prev_t = timestep - noise_scheduler.config.num_train_timesteps // num_inference_steps

    return prev_t

def predict_start_from_noise(sample, t, model_output):
    t = t.to(noise_scheduler.alphas_cumprod.device)
    prev_t = previous_timestep(t)

    # 1. compute alphas, betas
    alpha_prod_t = noise_scheduler.alphas_cumprod[t].to(sample.device)
    alpha_prod_t_prev = noise_scheduler.alphas_cumprod[prev_t] if prev_t >= 0 else noise_scheduler.one
    alpha_prod_t_prev = alpha_prod_t_prev.to(sample.device)
    beta_prod_t = 1 - alpha_prod_t
    beta_prod_t_prev = 1 - alpha_prod_t_prev
    current_alpha_t = alpha_prod_t / alpha_prod_t_prev
    current_beta_t = 1 - current_alpha_t

    # 2. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
    if noise_scheduler.config.prediction_type == "epsilon":
        pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
    elif noise_scheduler.config.prediction_type == "sample":
        pred_original_sample = model_output
    elif noise_scheduler.config.prediction_type == "v_prediction":
        pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
    else:
        raise ValueError(
            f"prediction_type given as {noise_scheduler.config.prediction_type} must be one of `epsilon`, `sample` or"
            " `v_prediction`  for the DDPMScheduler."
        )

    return pred_original_sample

# def main(args):
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)

accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)

accelerator = Accelerator(
    gradient_accumulation_steps=args.gradient_accumulation_steps,
    mixed_precision=args.mixed_precision,
    log_with=args.report_to,
    project_config=accelerator_project_config,
)

# Make one log on every process with the configuration for debugging.
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
    transformers.utils.logging.set_verbosity_warning()
    diffusers.utils.logging.set_verbosity_info()
else:
    transformers.utils.logging.set_verbosity_error()
    diffusers.utils.logging.set_verbosity_error()

# If passed along, set the training seed now.
if args.seed is not None:
    set_seed(args.seed)

# Handle the repository creation
if accelerator.is_main_process:
    if args.output_dir is not None:
        os.makedirs(args.output_dir, exist_ok=True)

    if args.push_to_hub:
        repo_id = create_repo(
            repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
        ).repo_id

# Load the tokenizer
if args.tokenizer_name:
    tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
elif args.pretrained_model_name_or_path:
    tokenizer = AutoTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer",
        revision=args.revision,
        use_fast=False,
    )

# import correct text encoder class
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)

# Load scheduler and smodels
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
noise_scheduler.set_timesteps(args.num_inference_steps)

text_encoder = text_encoder_cls.from_pretrained(
    args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
)
unet = UNet2DConditionModel.from_pretrained(
    args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
)

# Load VAE model
if args.vae_model_name_or_path:
    logger.info("Loading existing vae weights")
    vae = AutoencoderKL.from_pretrained(args.vae_model_name_or_path, subfolder="vae", revision=args.revision)
else:
    logger.info("Loading pretrained vae weights")
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)

# Load Controlnet model
if args.controlnet_model_name_or_path:
    logger.info("Loading existing controlnet weights")
    controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path,  subfolder="controlnet")
else:
    logger.info("Initializing controlnet weights from unet")
    controlnet = ControlNetModel.from_unet(unet, use_vae_encode_condition=True)
    
# # Load discriminator model
# discriminatornet = LPIPSWithDiscriminator(disc_start=1.0, kl_weight=0, perceptual_weight=1.0, disc_weight=0.5, disc_factor=1.0)

# Load discriminator model
discriminatornet = ProjectedDiscriminator(c_dim=384).train()
criterion_GAN = torch.nn.BCEWithLogitsLoss()
# 实例化提取cls_lr的特征网络
model_fea = vit_small(patch_size=14, img_size=518, block_chunks=0, init_values=1.0)
util_net.reload_model(model_fea, torch.load('preset/models/dino/dinov2_vits14_pretrain.pth'))
model_fea.requires_grad_(False)

# load lpips model
import lpips
net_lpips = lpips.LPIPS(net='vgg').cuda()

# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
        i = len(weights) - 1
        assert len(models) == 2 and len(weights) == 2
        for i, model in enumerate(models):
            if i==0:
                sub_dir = 'vae'
                model.save_pretrained(os.path.join(output_dir, sub_dir))
            # make sure to pop weight so that corresponding model is not saved again
            weights.pop()

    def load_model_hook(models, input_dir):
        assert len(models) == 2
        for i in range(len(models)):
            # pop models so that they are not loaded again
            model = models.pop()

            # load diffusers style into model
            if not isinstance(model, UNet2DConditionModel):
                load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet") # , low_cpu_mem_usage=False, ignore_mismatched_sizes=True
            else:
                load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") # , low_cpu_mem_usage=False, ignore_mismatched_sizes=True

            model.register_to_config(**load_model.config)

            model.load_state_dict(load_model.state_dict())
            del load_model

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder.requires_grad_(False)
controlnet.requires_grad_(False)
discriminatornet.train()
vae.train()

# unlease vae decoder for training
for name, params in vae.named_parameters():
    if 'decoder' in name:
        params.requires_grad = True

if args.enable_xformers_memory_efficient_attention:
    if is_xformers_available():
        import xformers

        xformers_version = version.parse(xformers.__version__)
        if xformers_version == version.parse("0.0.16"):
            logger.warn(
                "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
            )
        unet.enable_xformers_memory_efficient_attention()
        controlnet.enable_xformers_memory_efficient_attention()
    else:
        raise ValueError("xformers is not available. Make sure it is installed correctly")

if args.gradient_checkpointing:
    vae.enable_gradient_checkpointing()
    discriminatornet.enable_gradient_checkpointing()

# Check that all trainable models are in full precision
low_precision_error_string = (
    " Please make sure to always have all model weights in full float32 precision when starting training - even if"
    " doing mixed precision training, copy of the weights should still be float32."
)

if accelerator.unwrap_model(vae).dtype != torch.float32:
    raise ValueError(
        f"vae loaded as datatype {accelerator.unwrap_model(vae).dtype}. {low_precision_error_string}"
    )

# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
    torch.backends.cuda.matmul.allow_tf32 = True

if args.scale_lr:
    args.learning_rate = (
        args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
    )

# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
    try:
        import bitsandbytes as bnb
    except ImportError:
        raise ImportError(
            "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
        )

    optimizer_class = bnb.optim.AdamW8bit
else:
    optimizer_class = torch.optim.AdamW

# Optimizer creation
params_to_optimize = list(vae.parameters())
optimizer = optimizer_class(
    params_to_optimize,
    lr=args.learning_rate,
    betas=(args.adam_beta1, args.adam_beta2),
    weight_decay=args.adam_weight_decay,
    eps=args.adam_epsilon,
)
    
params_to_optimize_disc = list(discriminatornet.parameters())
optimizer_disc = optimizer_class(
    params_to_optimize_disc,
    lr=args.learning_rate,
    betas=(0.9, 0.999),
    weight_decay=args.adam_weight_decay,
    eps=args.adam_epsilon,
)

train_dataset = PairedCaptionDataset(root_folders=args.dataset_root_folders,
                                    tokenizer=tokenizer,
                                    gt_ratio=0) # let lr is gt

train_dataloader = torch.utils.data.DataLoader(
    train_dataset,
    num_workers=args.dataloader_num_workers,
    batch_size=args.train_batch_size,
    shuffle=False
)

# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
    weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
    weight_dtype = torch.bfloat16

# Move controlnet, unet and text_encoder to device and cast to weight_dtype
controlnet.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
unet.to(accelerator.device, dtype=weight_dtype)
model_fea.to(accelerator.device, dtype=weight_dtype)

# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
    args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    overrode_max_train_steps = True

lr_scheduler = get_scheduler(
    args.lr_scheduler,
    optimizer=optimizer,
    num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
    num_training_steps=args.max_train_steps * accelerator.num_processes,
    num_cycles=args.lr_num_cycles,
    power=args.lr_power,
)

lr_scheduler_disc = get_scheduler(
    args.lr_scheduler,
    optimizer=optimizer_disc,
    num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
    num_training_steps=args.max_train_steps * accelerator.num_processes,
    num_cycles=args.lr_num_cycles,
    power=args.lr_power,
)

# Prepare everything with our `accelerator`.
vae, discriminatornet, optimizer, optimizer_disc, train_dataloader, lr_scheduler, lr_scheduler_disc = accelerator.prepare(
    vae, discriminatornet, optimizer, optimizer_disc, train_dataloader, lr_scheduler, lr_scheduler_disc
)

# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
    tracker_config = dict(vars(args))

    # tensorboard cannot handle list types for config
    tracker_config.pop("validation_prompt")
    tracker_config.pop("validation_image")

    accelerator.init_trackers(args.tracker_project_name, config=tracker_config)

# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

logger.info("***** Running training *****")

logger.info(f"  Num Epochs = {args.num_train_epochs}")
logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f"  Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0

# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
    if args.resume_from_checkpoint != "latest":
        path = os.path.basename(args.resume_from_checkpoint)
    else:
        # Get the most recent checkpoint
        dirs = os.listdir(args.output_dir)
        dirs = [d for d in dirs if d.startswith("checkpoint")]
        dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
        path = dirs[-1] if len(dirs) > 0 else None

    if path is None:
        accelerator.print(
            f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
        )
        args.resume_from_checkpoint = None
        initial_global_step = 0
    else:
        accelerator.print(f"Resuming from checkpoint {path}")
        accelerator.load_state(os.path.join(args.output_dir, path))
        global_step = int(path.split("-")[1])

        initial_global_step = global_step
        first_epoch = global_step // num_update_steps_per_epoch
else:
    initial_global_step = 0

progress_bar = tqdm(
    range(0, args.max_train_steps),
    initial=initial_global_step,
    desc="Steps",
    # Only show the progress bar once on each machine.
    disable=not accelerator.is_local_main_process,
)

for epoch in range(first_epoch, args.num_train_epochs):
    for step, batch in enumerate(train_dataloader):
        l_acc = [vae, discriminatornet]
        with accelerator.accumulate(*l_acc):
            with torch.no_grad():
                total_time_steps = noise_scheduler.timesteps
                num_time_steps = len(total_time_steps)
                if num_time_steps != 1:
                    timesteps_loop = total_time_steps[-round(num_time_steps*args.t_max):]
                    timesteps_loop = timesteps_loop[:-round(num_time_steps*args.t_min)]
                    t_max = timesteps_loop[0]
                    t_min = timesteps_loop[-1]

                pixel_values = batch["pixel_values"].to(accelerator.device)
                if args.is_module:
                    latents_gt = vae.module.encode(pixel_values).latent_dist.sample()
                    latents_gt = latents_gt * vae.module.config.scaling_factor # Convert images to latent space
                else:
                    latents_gt = vae.encode(pixel_values).latent_dist.sample()
                    latents_gt = latents_gt * vae.config.scaling_factor # Convert images to latent space

                encoder_hidden_states = text_encoder(batch["input_caption"].to(accelerator.device))[0]

                controlnet_image = batch["conditioning_pixel_values"].to(accelerator.device)
                controlnet_image_encode = 2*controlnet_image-1
                if args.is_module:
                    vae_encode_condition_hidden_states = vae.module.encode(controlnet_image_encode).latent_dist.sample()
                    vae_encode_condition_hidden_states = vae_encode_condition_hidden_states * vae.module.config.scaling_factor
                else:
                    vae_encode_condition_hidden_states = vae.encode(controlnet_image_encode).latent_dist.sample()
                    vae_encode_condition_hidden_states = vae_encode_condition_hidden_states * vae.config.scaling_factor # Convert images to latent space
                                
                if global_step > args.begin_disc:
                    lambda_l2 = args.lambda_l2
                    lambda_lpips = args.lambda_lpips
                    lambda_disc = args.lambda_disc
                    lambda_disc_train = args.lambda_disc_train
                else:
                    lambda_l2 = args.lambda_l2
                    lambda_lpips = 0
                    lambda_disc = 0
                    lambda_disc_train = args.lambda_disc_train

                noise = torch.randn_like(latents_gt)
                bsz = latents_gt.shape[0]
                
                timesteps = args.start_timesteps * torch.ones(latents_gt.shape[0]).to(accelerator.device)
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                if args.start_timesteps==1:
                    noisy_latents = noise_scheduler.add_noise(vae_encode_condition_hidden_states, noise, timesteps)
                    noisy_latents = noisy_latents.to(dtype=weight_dtype)
                    encoder_hidden_states = encoder_hidden_states.to(dtype=weight_dtype)
                    controlnet_image = controlnet_image.to(dtype=weight_dtype)
                    vae_encode_condition_hidden_states = vae_encode_condition_hidden_states.to(dtype=weight_dtype)

                    down_block_res_samples, mid_block_res_sample = controlnet(
                        noisy_latents,
                        timesteps,
                        encoder_hidden_states=encoder_hidden_states,
                        controlnet_cond=controlnet_image,
                        return_dict=False,
                        vae_encode_condition_hidden_states=vae_encode_condition_hidden_states,
                    )

                    # Predict the noise residual
                    model_pred = unet(
                        noisy_latents,
                        timesteps,
                        encoder_hidden_states=encoder_hidden_states,
                        down_block_additional_residuals=[
                            sample.to(dtype=weight_dtype) for sample in down_block_res_samples
                        ],
                        mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype),
                    ).sample

                    # Predict x0 for T
                    x0_T = noisy_latents - model_pred
                else:
                    # Sample noise based on LR (controlnet_image) or a Random Noise?
                    if args.is_start_lr:
                        noisy_latents = noise_scheduler.add_noise(vae_encode_condition_hidden_states, noise, timesteps)
                        noisy_latents = noisy_latents.to(dtype=weight_dtype)
                    else:
                        noisy_latents = noise_scheduler.add_noise(latents_gt, noise, timesteps)
                        noisy_latents = noisy_latents.to(dtype=weight_dtype)

                    encoder_hidden_states = encoder_hidden_states.to(dtype=weight_dtype)
                    controlnet_image = controlnet_image.to(dtype=weight_dtype)
                    vae_encode_condition_hidden_states = vae_encode_condition_hidden_states.to(dtype=weight_dtype)

                    down_block_res_samples, mid_block_res_sample = controlnet(
                            noisy_latents,
                            timesteps,
                            encoder_hidden_states=encoder_hidden_states,
                            controlnet_cond=controlnet_image,
                            return_dict=False,
                            vae_encode_condition_hidden_states=vae_encode_condition_hidden_states,
                    )

                    # Predict the noise residual
                    model_pred = unet(
                        noisy_latents,
                        timesteps,
                        encoder_hidden_states=encoder_hidden_states,
                        down_block_additional_residuals=down_block_res_samples,
                        mid_block_additional_residual=mid_block_res_sample,
                        return_dict=False,
                    )[0]

                    # Predict x0 for T
                    x0_T = predict_start_from_noise(noisy_latents, timesteps[0], model_pred)

                if num_time_steps!=1:
                    # Re-add noise on x0_tmax
                    noise2 = torch.randn_like(latents_gt)
                    timesteps = t_max * torch.ones(model_pred.shape[0]).to(accelerator.device)
                    timesteps = timesteps.long()
                    latents = noise_scheduler.add_noise(x0_T, noise2, timesteps[0])


                    # Denoising loop
                    for i, t in enumerate(timesteps_loop):
                        
                        # controlnet_latent_model_input = noise_scheduler.scale_model_input(latents, t)
                        latents = latents.to(dtype=weight_dtype)
                        down_block_res_samples, mid_block_res_sample = controlnet(
                            latents,
                            t,
                            encoder_hidden_states=encoder_hidden_states,
                            controlnet_cond=controlnet_image,
                            return_dict=False,
                            vae_encode_condition_hidden_states=vae_encode_condition_hidden_states,
                        )

                        # predict the noise residual
                        noise_pred = unet(
                            latents,
                            t,
                            encoder_hidden_states=encoder_hidden_states,
                            down_block_additional_residuals=down_block_res_samples,
                            mid_block_additional_residual=mid_block_res_sample,
                            return_dict=False,
                        )[0]

                        # compute the previous noisy sample x_t -> x_t-1
                        latents_old = latents
                        latents = noise_scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                    x0_tmin = predict_start_from_noise(latents_old, t, noise_pred)
                    latents = x0_tmin
                    latents = latents.to(dtype=torch.float32)
                else:
                    latents = x0_T.to(dtype=torch.float32)

        
            # optimize the generator: vae decoder
            discriminatornet.requires_grad_(False)
            if args.is_module:
                image = vae.module.decode(latents / vae.module.config.scaling_factor, return_dict=False)[0].clamp(-1, 1)
            else:
                image = vae.decode(latents / vae.config.scaling_factor, return_dict=False)[0].clamp(-1, 1)
            # compute the discriminator loss & update parameters
            _, cls_lr = model_fea(F.interpolate(controlnet_image, size=518, mode='bilinear'))

            # compute the generator loss
            pred_fake, _ = discriminatornet(image, cls_lr.detach())
            pred_fake = torch.cat(pred_fake, dim=1)
            gan_loss = -torch.mean(pred_fake)

            loss_x0 = F.mse_loss(image.float(), pixel_values.float(), reduction="mean") * lambda_l2
            if lambda_lpips != 0:
                loss_lpips = net_lpips(image.float(), pixel_values.float()).mean() * lambda_lpips
                loss_x0 = loss_lpips + loss_x0

            loss = loss_x0 + lambda_disc * gan_loss

            accelerator.backward(loss)

            if accelerator.sync_gradients:
                params_to_clip = vae.parameters()
                accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad(set_to_none=args.set_grads_to_none)

            # update discriminator
            discriminatornet.requires_grad_(True)
            if args.is_module:
                discriminatornet.module.dino.requires_grad_(False)
            else:
                discriminatornet.dino.requires_grad_(False)
            pred_real, features = discriminatornet(pixel_values, cls_lr.detach())
            pred_fake, _ = discriminatornet(image.detach(), cls_lr.detach())
            pred_fake = torch.cat(pred_fake, dim=1)

            pred_real = torch.cat(pred_real, dim=1)
            loss_real = torch.mean(torch.relu(1.0 - pred_real)) * lambda_disc_train

            loss_fake = torch.mean(torch.relu(1.0 + pred_fake)) * lambda_disc_train
            loss_disc = loss_real + loss_fake

            accelerator.backward(loss_disc)
            if accelerator.sync_gradients:
                params_to_clip = discriminatornet.parameters()
                accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
            optimizer_disc.step()
            lr_scheduler_disc.step()
            optimizer_disc.zero_grad(set_to_none=args.set_grads_to_none)
            model_fea.zero_grad(set_to_none=args.set_grads_to_none)

        # Checks if the accelerator has performed an optimization step behind the scenes
        if accelerator.sync_gradients:
            progress_bar.update(1)
            global_step += 1

            if accelerator.is_main_process:
                if global_step % args.checkpointing_steps == 0:

                    save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                    accelerator.save_state(save_path)
                    logger.info(f"Saved state to {save_path}")

                # if args.validation_prompt is not None and global_step % args.validation_steps == 0:
                if False:
                    image_logs = log_validation(
                        vae,
                        text_encoder,
                        tokenizer,
                        unet,
                        controlnet,
                        args,
                        accelerator,
                        weight_dtype,
                        global_step,
                    )

        logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
        progress_bar.set_postfix(**logs)
        accelerator.log(logs, step=global_step)

        if global_step >= args.max_train_steps:
            break

# Create the pipeline using using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
    vae = accelerator.unwrap_model(vae)
    vae.save_pretrained(args.output_dir)

    if args.push_to_hub:
        save_model_card(
            repo_id,
            image_logs=image_logs,
            base_model=args.pretrained_model_name_or_path,
            repo_folder=args.output_dir,
        )
        upload_folder(
            repo_id=repo_id,
            folder_path=args.output_dir,
            commit_message="End of training",
            ignore_patterns=["step_*", "epoch_*"],
        )

accelerator.end_training()