Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
import contextlib | |
from functools import lru_cache | |
import torch | |
#from modules import errors | |
if sys.platform == "darwin": | |
from modules import mac_specific | |
def has_mps() -> bool: | |
if sys.platform != "darwin": | |
return False | |
else: | |
return mac_specific.has_mps | |
def get_cuda_device_string(): | |
return "cuda" | |
def get_optimal_device_name(): | |
if torch.cuda.is_available(): | |
return get_cuda_device_string() | |
if has_mps(): | |
return "mps" | |
return "cpu" | |
def get_optimal_device(): | |
return torch.device(get_optimal_device_name()) | |
def get_device_for(task): | |
return get_optimal_device() | |
def torch_gc(): | |
if torch.cuda.is_available(): | |
with torch.cuda.device(get_cuda_device_string()): | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
if has_mps(): | |
mac_specific.torch_mps_gc() | |
def enable_tf32(): | |
if torch.cuda.is_available(): | |
# enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't | |
# see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407 | |
if any(torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())): | |
torch.backends.cudnn.benchmark = True | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
enable_tf32() | |
#errors.run(enable_tf32, "Enabling TF32") | |
cpu = torch.device("cpu") | |
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = torch.device("cuda") | |
dtype = torch.float16 | |
dtype_vae = torch.float16 | |
dtype_unet = torch.float16 | |
unet_needs_upcast = False | |
def cond_cast_unet(input): | |
return input.to(dtype_unet) if unet_needs_upcast else input | |
def cond_cast_float(input): | |
return input.float() if unet_needs_upcast else input | |
def randn(seed, shape): | |
torch.manual_seed(seed) | |
return torch.randn(shape, device=device) | |
def randn_without_seed(shape): | |
return torch.randn(shape, device=device) | |
def autocast(disable=False): | |
if disable: | |
return contextlib.nullcontext() | |
return torch.autocast("cuda") | |
def without_autocast(disable=False): | |
return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext() | |
class NansException(Exception): | |
pass | |
def test_for_nans(x, where): | |
if not torch.all(torch.isnan(x)).item(): | |
return | |
if where == "unet": | |
message = "A tensor with all NaNs was produced in Unet." | |
elif where == "vae": | |
message = "A tensor with all NaNs was produced in VAE." | |
else: | |
message = "A tensor with all NaNs was produced." | |
message += " Use --disable-nan-check commandline argument to disable this check." | |
raise NansException(message) | |
def first_time_calculation(): | |
""" | |
just do any calculation with pytorch layers - the first time this is done it allocaltes about 700MB of memory and | |
spends about 2.7 seconds doing that, at least wih NVidia. | |
""" | |
x = torch.zeros((1, 1)).to(device, dtype) | |
linear = torch.nn.Linear(1, 1).to(device, dtype) | |
linear(x) | |
x = torch.zeros((1, 1, 3, 3)).to(device, dtype) | |
conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype) | |
conv2d(x) | |