Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import binascii | |
from safetensors import safe_open | |
import torch | |
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_vae_checkpoint | |
def rand_name(length=8, suffix=''): | |
name = binascii.b2a_hex(os.urandom(length)).decode('utf-8') | |
if suffix: | |
if not suffix.startswith('.'): | |
suffix = '.' + suffix | |
name += suffix | |
return name | |
def cycle(dl): | |
while True: | |
for data in dl: | |
yield data | |
def exists(x): | |
return x is not None | |
def identity(x): | |
return x | |
def load_dreambooth_lora(unet, vae=None, model_path=None, alpha=1.0, model_base=""): | |
if model_path is None: return unet | |
if model_path.endswith(".ckpt"): | |
base_state_dict = torch.load(model_path)['state_dict'] | |
elif model_path.endswith(".safetensors"): | |
state_dict = {} | |
with safe_open(model_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
state_dict[key] = f.get_tensor(key) | |
is_lora = all("lora" in k for k in state_dict.keys()) | |
if not is_lora: | |
base_state_dict = state_dict | |
else: | |
base_state_dict = {} | |
with safe_open(model_base, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
base_state_dict[key] = f.get_tensor(key) | |
converted_unet_checkpoint = convert_ldm_unet_checkpoint(base_state_dict, unet.config) | |
unet_state_dict = unet.state_dict() | |
for key in converted_unet_checkpoint: | |
converted_unet_checkpoint[key] = alpha * converted_unet_checkpoint[key] + (1.0-alpha) * unet_state_dict[key] | |
unet.load_state_dict(converted_unet_checkpoint, strict=False) | |
if vae is not None: | |
converted_vae_checkpoint = convert_ldm_vae_checkpoint(base_state_dict, vae.config) | |
vae.load_state_dict(converted_vae_checkpoint) | |
return unet, vae |