Spaces:
Running
on
Zero
Running
on
Zero
NightRaven109
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,291 +1,10 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
[Lingchen Sun](https://scholar.google.com/citations?hl=zh-CN&tzom=-480&user=ZCDjTn8AAAAJ)<sup>1,2</sup>
|
13 |
-
| [Rongyuan Wu](https://scholar.google.com/citations?user=A-U8zE8AAAAJ&hl=zh-CN)<sup>1,2</sup> |
|
14 |
-
[Jie Liang](https://scholar.google.com.sg/citations?user=REWxLZsAAAAJ&hl)<sup>2</sup> |
|
15 |
-
[Zhengqiang Zhang](https://scholar.google.com/citations?hl=zh-CN&user=UX26wSMAAAAJ&view_op=list_works&sortby=pubdate)<sup>1,2</sup> |
|
16 |
-
[Hongwei Yong](https://scholar.google.com.hk/citations?user=Xii74qQAAAAJ&hl=zh-CN)<sup>1</sup> |
|
17 |
-
[Lei Zhang](https://www4.comp.polyu.edu.hk/~cslzhang)<sup>1,2</sup>
|
18 |
-
|
19 |
-
<sup>1</sup>The Hong Kong Polytechnic University, <sup>2</sup>OPPO Research Institute
|
20 |
-
</div>
|
21 |
-
|
22 |
-
:star: If CCSR is helpful to your images or projects, please help star this repo. Thanks! :hugs:
|
23 |
-
|
24 |
-
## π§‘ΰΎΰ½² What's New in CCSR-v2?
|
25 |
-
We have implemented the CCSR-v2 code based on the [Diffusers](https://github.com/huggingface/diffusers). Compared to CCSR-v1, CCSR-v2 brings a host of upgrades:
|
26 |
-
|
27 |
-
- π οΈ**Step Flexibility**: Offers flexibility in diffusion step selection, **allowing users to freely adjust the number of steps to suit their specific requirements**. This adaptability **requires no additional re-training**, ensuring seamless integration into diverse workflows.
|
28 |
-
- β‘**Efficiency**: Supports highly efficient inference with **as few as 2 or even 1 diffusion step**, drastically reducing computation time without compromising quality.
|
29 |
-
- π**Enhanced Clarity**: With upgraded algorithms, CCSR-v2 restores images with crisper details while maintaining fidelity.
|
30 |
-
- βοΈ**Results stability**: CCSR-v2 exhibits significantly improved stability in synthesizing fine image details, ensuring higher-quality outputs.
|
31 |
-
- π**Stage 2 Refinement**: In CCSR-v2, the output $\hat{x}_{0 \gets T}$ from Stage 1 is now directly fed into Stage 2, streamlining the restoration process into an efficient one-step diffusion workflow. This strategy boosts both speed and performance.
|
32 |
-
|
33 |
-
![ccsr](figs/fig.png)
|
34 |
-
Visual comparisons between the SR outputs with the same input low-quality image but two different noise samples by different DM-based
|
35 |
-
methods. `S` denotes diffusion sampling timesteps. Existing DM-based methods, including StableSR, PASD, SeeSR, SUPIR and AddSR, **show noticeable instability with the different noise samples**. OSEDiff directly takes low-quality image as input without
|
36 |
-
noise sampling. It is deterministic and stable, but **cannot perform multi-step diffusion** for high generative capacity. In contrast, **our proposed CCSR method
|
37 |
-
is flexible for both multi-step diffusion and single-step diffusion, while producing stable results with high fidelity and visual quality**.
|
38 |
-
|
39 |
-
## β° Update
|
40 |
-
- **2024.12.12**: Code and models for CCSR-v2 are released. π Please refer to this [branch](https://github.com/csslc/CCSR/tree/CCSR-v2.0).
|
41 |
-
- **2024.9.25**: β[CCSR-v2](https://arxiv.org/pdf/2401.00877) is released, offering reduced step requirements and supporting flexible diffusion step selection (2 or even 1 step) during the inference stage without the need for re-training.
|
42 |
-
- **2023.12.23**: Code and models for [CCSR-v1](https://arxiv.org/pdf/2401.00877v1) are released. Please refer to this [branch](https://github.com/csslc/CCSR/tree/CCSR-v1.0).
|
43 |
-
|
44 |
-
|
45 |
-
## π Overview Framework
|
46 |
-
![ccsr](figs/framework.png)
|
47 |
-
|
48 |
-
## π Visual Results
|
49 |
-
### Demo on Real-world SR
|
50 |
-
|
51 |
-
[<img src="figs/compare_1.png" height="213px"/>](https://imgsli.com/MzI2MTg5) [<img src="figs/compare_2.png" height="213px"/>](https://imgsli.com/MzI2MTky/1/3) [<img src="figs/compare_3.png" height="213px"/>](https://imgsli.com/MzI2MTk0/0/2) [<img src="figs/compare_4.png" height="213px"/>](https://imgsli.com/MzI2MTk1/0/2)
|
52 |
-
|
53 |
-
|
54 |
-
![ccsr](figs/compare_standard.png)
|
55 |
-
|
56 |
-
![ccsr](figs/compare_efficient.png)
|
57 |
-
For more comparisons, please refer to our paper for details.
|
58 |
-
|
59 |
-
## π Quantitative comparisons
|
60 |
-
We propose new stability metrics, namely global standard deviation (G-STD) and local standard deviation (L-STD), to respectively measure the image-level and pixel-level variations of the SR results of diffusion-based methods.
|
61 |
-
|
62 |
-
More details about G-STD and L-STD can be found in our paper.
|
63 |
-
|
64 |
-
![ccsr](figs/table.png)
|
65 |
-
## β Dependencies and Installation
|
66 |
-
```shell
|
67 |
-
## git clone this repository
|
68 |
-
git clone https://github.com/csslc/CCSR.git
|
69 |
-
cd CCSR
|
70 |
-
|
71 |
-
|
72 |
-
# create an environment with python >= 3.9
|
73 |
-
conda create -n ccsr python=3.9
|
74 |
-
conda activate ccsr
|
75 |
-
pip install -r requirements.txt
|
76 |
-
```
|
77 |
-
## π Quick Inference
|
78 |
-
**For ease of comparison, we have provided the test results of CCSR-v2 on the DIV2K, RealSR, and DrealSR benchmarks with varying diffusion steps, which can be accessed via [Google Drive](https://drive.google.com/drive/folders/1xjURQZgKAlENzMnAJA2PDG9h_UxfZzio?usp=sharing).**
|
79 |
-
|
80 |
-
#### Step 1: Download the pretrained models
|
81 |
-
- Download the pretrained SD-2.1-base models from [HuggingFace](https://huggingface.co/stabilityai/stable-diffusion-2-1-base).
|
82 |
-
- Download the CCSR-v2 models from and put the models in the `preset/models`:
|
83 |
-
|
84 |
-
| Model Name | Description | GoogleDrive | BaiduNetdisk |
|
85 |
-
|:-----------------------|:---------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
86 |
-
| Controlnet | Trained in the stage 1. | [download](https://drive.google.com/drive/folders/1aHwgodKwKYZJBKs0QlFzanSjMDhrNyRA?usp=sharing) | [download](https://pan.baidu.com/s/1SKS70iE4GhhHGxqY1KS8mw) (pwd: ccsr) |
|
87 |
-
| VAE | Trained in the stage 2. | [download](https://drive.google.com/drive/folders/1yHfMV81Md6db4StHTP5MC-eSeLFeBKm8?usp=sharing) | [download](https://pan.baidu.com/s/1fxOIeL6Hk6Muq9h8itAIKQ) (pwd: ccsr) |
|
88 |
-
| Pre-trained Controlnet | The pre-trained model of stage1. | [download](https://drive.google.com/drive/folders/1LTtBRuObITOJwbW-sTDnHtp8xIUZFDHh?usp=sharing) | [download](https://pan.baidu.com/s/1mDeuHBqNj_Iol7PCY_Xfww) (pwd: ccsr) |
|
89 |
-
| Dino models | The pre-trained models for disc. | [download](https://drive.google.com/drive/folders/1PcuZGUTJlltdPz2yk2ZIa4GCtb1yk_y6?usp=sharing) | [download](https://pan.baidu.com/s/1nPdNwgua91mDDRApWUm39Q) (pwd: ccsr) |
|
90 |
-
|
91 |
-
#### Step 2: Prepare testing data
|
92 |
-
You can put the testing images in the `preset/test_datasets`.
|
93 |
-
|
94 |
-
#### Step 3: Running testing command
|
95 |
-
For one-step diffusion process:
|
96 |
-
```
|
97 |
-
python test_ccsr_tile.py \
|
98 |
-
--pretrained_model_path preset/models/stable-diffusion-2-1-base \
|
99 |
-
--controlnet_model_path preset/models \
|
100 |
-
--vae_model_path preset/models \
|
101 |
-
--baseline_name ccsr-v2 \
|
102 |
-
--image_path preset/test_datasets \
|
103 |
-
--output_dir experiments/test \
|
104 |
-
--sample_method ddpm \
|
105 |
-
--num_inference_steps 1 \
|
106 |
-
--t_min 0.0 \
|
107 |
-
--start_point lr \
|
108 |
-
--start_steps 999 \
|
109 |
-
--process_size 512 \
|
110 |
-
--guidance_scale 1.0 \
|
111 |
-
--sample_times 1 \
|
112 |
-
--use_vae_encode_condition \
|
113 |
-
--upscale 4
|
114 |
-
```
|
115 |
-
For multi-step diffusion process:
|
116 |
-
```
|
117 |
-
python test_ccsr_tile.py \
|
118 |
-
--pretrained_model_path preset/models/stable-diffusion-2-1-base \
|
119 |
-
--controlnet_model_path preset/models \
|
120 |
-
--vae_model_path preset/models \
|
121 |
-
--baseline_name ccsr-v2 \
|
122 |
-
--image_path preset/test_datasets \
|
123 |
-
--output_dir experiments/test \
|
124 |
-
--sample_method ddpm \
|
125 |
-
--num_inference_steps 6 \
|
126 |
-
--t_max 0.6667 \
|
127 |
-
--t_min 0.5 \
|
128 |
-
--start_point lr \
|
129 |
-
--start_steps 999 \
|
130 |
-
--process_size 512 \
|
131 |
-
--guidance_scale 4.5 \
|
132 |
-
--sample_times 1 \
|
133 |
-
--use_vae_encode_condition \
|
134 |
-
--upscale 4
|
135 |
-
```
|
136 |
-
We integrate [tile_diffusion](https://github.com/albarji/mixture-of-diffusers) and [tile_vae](https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111/tree/main) to the [test_ccsr_tile.py](test_ccsr_tile.py) to save the GPU memory for inference.
|
137 |
-
You can change the tile size and stride according to the VRAM of your device.
|
138 |
-
```
|
139 |
-
python test_ccsr_tile.py \
|
140 |
-
--pretrained_model_path preset/models/stable-diffusion-2-1-base \
|
141 |
-
--controlnet_model_path preset/models \
|
142 |
-
--vae_model_path preset/models \
|
143 |
-
--baseline_name ccsr-v2 \
|
144 |
-
--image_path preset/test_datasets \
|
145 |
-
--output_dir experiments/test \
|
146 |
-
--sample_method ddpm \
|
147 |
-
--num_inference_steps 6 \
|
148 |
-
--t_max 0.6667 \
|
149 |
-
--t_min 0.5 \
|
150 |
-
--start_point lr \
|
151 |
-
--start_steps 999 \
|
152 |
-
--process_size 512 \
|
153 |
-
--guidance_scale 4.5 \
|
154 |
-
--sample_times 1 \
|
155 |
-
--use_vae_encode_condition \
|
156 |
-
--upscale 4 \
|
157 |
-
--tile_diffusion \
|
158 |
-
--tile_diffusion_size 512 \
|
159 |
-
--tile_diffusion_stride 256 \
|
160 |
-
--tile_vae \
|
161 |
-
--vae_decoder_tile_size 224 \
|
162 |
-
--vae_encoder_tile_size 1024 \
|
163 |
-
```
|
164 |
-
|
165 |
-
You can obtain `N` different SR results by setting `sample_times` as `N` to test the stability of CCSR. The data folder should be like this:
|
166 |
-
|
167 |
-
```
|
168 |
-
experiments/test
|
169 |
-
βββ sample00 # the first group of SR results
|
170 |
-
βββ sample01 # the second group of SR results
|
171 |
-
...
|
172 |
-
βββ sampleN # the N-th group of SR results
|
173 |
-
```
|
174 |
-
|
175 |
-
## π Evaluation
|
176 |
-
1. Calculate the Image Quality Assessment for each restored group.
|
177 |
-
|
178 |
-
Fill in the required information in [cal_iqa.py](cal_iqa/cal_iqa.py) and run, then you can obtain the evaluation results in the folder like this:
|
179 |
-
```
|
180 |
-
log_path
|
181 |
-
βββ log_name_npy # save the IQA values of each restored group as the npy files
|
182 |
-
βββ log_name.log # log recode
|
183 |
-
```
|
184 |
-
|
185 |
-
2. Calculate the G-STD value for the diffusion-based SR method.
|
186 |
-
|
187 |
-
Fill in the required information in [iqa_G-STD.py](cal_iqa/iqa_G-STD.py) and run, then you can obtain the mean IQA values of N restored groups and G-STD value.
|
188 |
-
|
189 |
-
3. Calculate the L-STD value for the diffusion-based SR method.
|
190 |
-
|
191 |
-
Fill in the required information in [iqa_L-STD.py](cal_iqa/iqa_L-STD.py) and run, then you can obtain the L-STD value.
|
192 |
-
|
193 |
-
|
194 |
-
## π Train
|
195 |
-
|
196 |
-
#### Step1: Prepare training data
|
197 |
-
Generate txt file for the training set.
|
198 |
-
Fill in the required information in [get_path](scripts/get_path.py) and run, then you can obtain the txt file recording the paths of ground-truth images.
|
199 |
-
You can save the txt file into `preset/gt_path.txt`.
|
200 |
-
|
201 |
-
#### Step2: Train Stage1 Model
|
202 |
-
1. Download pretrained [Stable Diffusion v2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) to provide generative capabilities.
|
203 |
-
|
204 |
-
```shell
|
205 |
-
wget https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt --no-check-certificate
|
206 |
-
```
|
207 |
-
|
208 |
-
2. Start training.
|
209 |
-
|
210 |
-
```shell
|
211 |
-
CUDA_VISIBLE_DEVICES="0,1,2,3," accelerate launch train_ccsr_stage1.py \
|
212 |
-
--pretrained_model_name_or_path="preset/models/stable-diffusion-2-1-base" \
|
213 |
-
--controlnet_model_name_or_path='preset/models/pretrained_controlnet' \
|
214 |
-
--enable_xformers_memory_efficient_attention \
|
215 |
-
--output_dir="./experiments/ccsrv2_stage1" \
|
216 |
-
--mixed_precision="fp16" \
|
217 |
-
--resolution=512 \
|
218 |
-
--learning_rate=5e-5 \
|
219 |
-
--train_batch_size=4 \
|
220 |
-
--gradient_accumulation_steps=6 \
|
221 |
-
--dataloader_num_workers=0 \
|
222 |
-
--checkpointing_steps=500 \
|
223 |
-
--t_max=0.6667 \
|
224 |
-
--max_train_steps=20000 \
|
225 |
-
--dataset_root_folders 'preset/gt_path.txt'
|
226 |
-
```
|
227 |
-
|
228 |
-
#### Step3: Train Stage2 Model
|
229 |
-
1. Put the model obtained from the stage1 into `controlnet_model_name_or_path`.
|
230 |
-
2. Start training.
|
231 |
-
```shell
|
232 |
-
CUDA_VISIBLE_DEVICES="0,1,2,3," accelerate launch train_ccsr_stage2.py \
|
233 |
-
--pretrained_model_name_or_path="preset/models/stable-diffusion-2-1-base" \
|
234 |
-
--controlnet_model_name_or_path='preset/models/model_stage1' \
|
235 |
-
--enable_xformers_memory_efficient_attention \
|
236 |
-
--output_dir="./experiments/ccsrv2_stage2" \
|
237 |
-
--mixed_precision="fp16" \
|
238 |
-
--resolution=512 \
|
239 |
-
--learning_rate=5e-6 \
|
240 |
-
--train_batch_size=2 \
|
241 |
-
--gradient_accumulation_steps=8 \
|
242 |
-
--checkpointing_steps=500 \
|
243 |
-
--is_start_lr=True \
|
244 |
-
--t_max=0.6667 \
|
245 |
-
--num_inference_steps=1 \
|
246 |
-
--is_module \
|
247 |
-
--lambda_l2=1.0 \
|
248 |
-
--lambda_lpips=1.0 \
|
249 |
-
--lambda_disc=0.05 \
|
250 |
-
--lambda_disc_train=0.5 \
|
251 |
-
--begin_disc=100 \
|
252 |
-
--max_train_steps=2000 \
|
253 |
-
--dataset_root_folders 'preset/gt_path.txt'
|
254 |
-
```
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
### Citations
|
261 |
-
|
262 |
-
If our code helps your research or work, please consider citing our paper.
|
263 |
-
The following are BibTeX references:
|
264 |
-
|
265 |
-
```
|
266 |
-
@article{sun2023ccsr,
|
267 |
-
title={Improving the Stability of Diffusion Models for Content Consistent Super-Resolution},
|
268 |
-
author={Sun, Lingchen and Wu, Rongyuan and Zhang, Zhengqiang and Yong, Hongwei and Zhang, Lei},
|
269 |
-
journal={arXiv preprint arXiv:2401.00877},
|
270 |
-
year={2024}
|
271 |
-
}
|
272 |
-
```
|
273 |
-
|
274 |
-
### License
|
275 |
-
This project is released under the [Apache 2.0 license](LICENSE).
|
276 |
-
|
277 |
-
### Acknowledgement
|
278 |
-
This project is based on [ControlNet](https://github.com/lllyasviel/ControlNet), [BasicSR](https://github.com/XPixelGroup/BasicSR) and [SeeSR](https://github.com/cswry/SeeSR). Some codes are brought from [ADDSR](https://github.com/NJU-PCALab/AddSR). Thanks for their awesome works.
|
279 |
-
|
280 |
-
### Contact
|
281 |
-
If you have any questions, please contact: [email protected]
|
282 |
-
|
283 |
-
|
284 |
-
<details>
|
285 |
-
<summary>statistics</summary>
|
286 |
-
|
287 |
-
![visitors](https://visitor-badge.laobi.icu/badge?page_id=csslc/CCSR)
|
288 |
-
|
289 |
-
</details>
|
290 |
-
|
291 |
-
|
|
|
1 |
+
---
|
2 |
+
title: TextureUpscaleBeta
|
3 |
+
emoji: π’
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.9.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|