Spaces:
Sleeping
Sleeping
Commit
·
066b002
1
Parent(s):
56dac59
Initial Gradio app for virtual staging
Browse files- .gitattributes +1 -35
- GroundingDINO +1 -0
- app.py +270 -0
- requirements.txt +20 -0
- weights/groundingdino_swint_ogc.pth +3 -0
.gitattributes
CHANGED
@@ -1,35 +1 @@
|
|
1 |
-
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
weights/*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GroundingDINO
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 856dde20aee659246248e20734ef9ba5214f5e44
|
app.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from PIL import Image, ImageOps
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import gradio as gr
|
7 |
+
import gc
|
8 |
+
import sys
|
9 |
+
|
10 |
+
GROUNDING_DINO_PATH = "./GroundingDINO"
|
11 |
+
if os.path.exists(GROUNDING_DINO_PATH) and GROUNDING_DINO_PATH not in sys.path:
|
12 |
+
sys.path.insert(0, GROUNDING_DINO_PATH)
|
13 |
+
|
14 |
+
from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
|
15 |
+
from transformers import pipeline as hf_pipeline
|
16 |
+
|
17 |
+
try:
|
18 |
+
from groundingdino.util.inference import load_model as load_gdino_model, predict as predict_gdino
|
19 |
+
import groundingdino.datasets.transforms as T
|
20 |
+
except ImportError:
|
21 |
+
load_gdino_model, predict_gdino, T = None, None, None
|
22 |
+
|
23 |
+
def box_cxcywh_to_xyxy(x: torch.Tensor, width: int, height: int) -> torch.Tensor:
|
24 |
+
"""
|
25 |
+
Convert bounding boxes from center-x, center-y, width, height format to x1, y1, x2, y2 format.
|
26 |
+
"""
|
27 |
+
if x.nelement() == 0:
|
28 |
+
return x
|
29 |
+
x_c, y_c, w, h = x.unbind(1)
|
30 |
+
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
|
31 |
+
b = torch.stack(b, dim=1)
|
32 |
+
b[:, [0, 2]] *= width
|
33 |
+
b[:, [1, 3]] *= height
|
34 |
+
return b
|
35 |
+
|
36 |
+
class SAMModel:
|
37 |
+
"""
|
38 |
+
Wrapper for Segment Anything Model (SAM) for segmentation from bounding boxes.
|
39 |
+
"""
|
40 |
+
def __init__(self, device: str = 'cuda:0') -> None:
|
41 |
+
self.device: str = device
|
42 |
+
self.model = None
|
43 |
+
|
44 |
+
def load(self, model_path: str = './weights/sam_l.pt') -> None:
|
45 |
+
from ultralytics import SAM
|
46 |
+
self.model = SAM(model_path).to(self.device)
|
47 |
+
|
48 |
+
def release(self) -> None:
|
49 |
+
if self.model is not None:
|
50 |
+
del self.model
|
51 |
+
self.model = None
|
52 |
+
gc.collect()
|
53 |
+
torch.cuda.empty_cache()
|
54 |
+
|
55 |
+
def segment_from_boxes(self, image: Image.Image, bboxes: torch.Tensor) -> np.ndarray:
|
56 |
+
if self.model is None:
|
57 |
+
raise RuntimeError("SAM Model not loaded.")
|
58 |
+
if bboxes.nelement() == 0:
|
59 |
+
return np.zeros((image.height, image.width), dtype=np.uint8)
|
60 |
+
results = self.model(image, bboxes=bboxes, verbose=False)
|
61 |
+
if not results or not results[0].masks:
|
62 |
+
return np.zeros((image.height, image.width), dtype=np.uint8)
|
63 |
+
final_mask = np.zeros((image.height, image.width), dtype=np.uint8)
|
64 |
+
for mask_data in results[0].masks.data:
|
65 |
+
final_mask = np.maximum(final_mask, mask_data.cpu().numpy().astype(np.uint8) * 255)
|
66 |
+
return final_mask
|
67 |
+
|
68 |
+
class DinoSamGrounding:
|
69 |
+
"""
|
70 |
+
Combines GroundingDINO and SAM for text-guided object segmentation.
|
71 |
+
"""
|
72 |
+
def __init__(self, device: str = 'cuda:0') -> None:
|
73 |
+
if predict_gdino is None:
|
74 |
+
raise ImportError("GroundingDINO is not installed or accessible.")
|
75 |
+
self.device: str = device
|
76 |
+
self.grounding_dino_model = None
|
77 |
+
self.sam_wrapper = SAMModel(device=device)
|
78 |
+
|
79 |
+
def load(self, config_path: str = "./GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py", checkpoint_path: str = "./weights/groundingdino_swint_ogc.pth") -> None:
|
80 |
+
self.grounding_dino_model = load_gdino_model(config_path, checkpoint_path, device=self.device)
|
81 |
+
self.sam_wrapper.load()
|
82 |
+
|
83 |
+
def release(self) -> None:
|
84 |
+
if self.grounding_dino_model is not None:
|
85 |
+
del self.grounding_dino_model
|
86 |
+
self.grounding_dino_model = None
|
87 |
+
self.sam_wrapper.release()
|
88 |
+
gc.collect()
|
89 |
+
torch.cuda.empty_cache()
|
90 |
+
|
91 |
+
def generate_mask_from_text(self, image: Image.Image, text_prompt: str, box_threshold: float = 0.35, text_threshold: float = 0.25) -> np.ndarray:
|
92 |
+
"""
|
93 |
+
Generate a segmentation mask for objects matching the text prompt.
|
94 |
+
"""
|
95 |
+
if self.grounding_dino_model is None:
|
96 |
+
raise RuntimeError("Models not loaded. Call .load() first.")
|
97 |
+
transform = T.Compose([
|
98 |
+
T.RandomResize([800], max_size=1333),
|
99 |
+
T.ToTensor(),
|
100 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
101 |
+
])
|
102 |
+
image_tensor, _ = transform(image, None)
|
103 |
+
boxes_relative, logits, phrases = predict_gdino(
|
104 |
+
model=self.grounding_dino_model,
|
105 |
+
image=image_tensor,
|
106 |
+
caption=text_prompt,
|
107 |
+
box_threshold=box_threshold,
|
108 |
+
text_threshold=text_threshold,
|
109 |
+
device=self.device
|
110 |
+
)
|
111 |
+
if boxes_relative.nelement() == 0:
|
112 |
+
return np.zeros((image.height, image.width), dtype=np.uint8)
|
113 |
+
H, W = image.height, image.width
|
114 |
+
boxes_absolute = box_cxcywh_to_xyxy(x=boxes_relative, width=W, height=H)
|
115 |
+
boxes_absolute = boxes_absolute.to(self.device)
|
116 |
+
mask = self.sam_wrapper.segment_from_boxes(image, bboxes=boxes_absolute)
|
117 |
+
if np.sum(mask) > 0:
|
118 |
+
kernel = np.ones((15, 15), np.uint8)
|
119 |
+
mask = cv2.dilate(mask, kernel, iterations=3)
|
120 |
+
return mask
|
121 |
+
|
122 |
+
HF_USERNAME: str = "Nightfury16"
|
123 |
+
BASE_SD_MODEL: str = "runwayml/stable-diffusion-v1-5"
|
124 |
+
CONTROLNET_INPAINT_REPO: str = f"{HF_USERNAME}/virtual-staging-controlnet"
|
125 |
+
CONTROLNET_CANNY_REPO: str = "lllyasviel/control_v11p_sd15_canny"
|
126 |
+
CONTROLNET_DEPTH_REPO: str = "lllyasviel/sd-controlnet-depth"
|
127 |
+
LORA_MODEL_REPO: str = f"{HF_USERNAME}/virtual-staging-lora-sd-v1-5"
|
128 |
+
|
129 |
+
GROUNDING_DINO_CONFIG: str = "./GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
130 |
+
GROUNDING_DINO_CHECKPOINT: str = "./weights/groundingdino_swint_ogc.pth"
|
131 |
+
SAM_CHECKPOINT: str = "./weights/sam_l.pt"
|
132 |
+
|
133 |
+
DEVICE: str = "cuda" if torch.cuda.is_available() else "cpu"
|
134 |
+
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
|
135 |
+
|
136 |
+
try:
|
137 |
+
controlnet_inpaint = ControlNetModel.from_pretrained(CONTROLNET_INPAINT_REPO, torch_dtype=DTYPE)
|
138 |
+
controlnet_canny = ControlNetModel.from_pretrained(CONTROLNET_CANNY_REPO, torch_dtype=DTYPE)
|
139 |
+
controlnet_depth = ControlNetModel.from_pretrained(CONTROLNET_DEPTH_REPO, torch_dtype=DTYPE)
|
140 |
+
|
141 |
+
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
142 |
+
BASE_SD_MODEL,
|
143 |
+
controlnet=[controlnet_inpaint, controlnet_canny, controlnet_depth],
|
144 |
+
torch_dtype=DTYPE,
|
145 |
+
safety_checker=None
|
146 |
+
).to(DEVICE)
|
147 |
+
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
148 |
+
|
149 |
+
try:
|
150 |
+
pipeline.load_lora_weights(
|
151 |
+
LORA_MODEL_REPO,
|
152 |
+
weight_name="pytorch_lora_weights.safetensors"
|
153 |
+
)
|
154 |
+
except Exception as e:
|
155 |
+
print(f"Error loading LoRA weights: {e}")
|
156 |
+
|
157 |
+
try:
|
158 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
159 |
+
except Exception:
|
160 |
+
pass
|
161 |
+
|
162 |
+
depth_estimator = hf_pipeline("depth-estimation", model="LiheYoung/depth-anything-base-hf", device=DEVICE)
|
163 |
+
layout_generator = DinoSamGrounding(device=DEVICE)
|
164 |
+
layout_generator.load(
|
165 |
+
config_path=GROUNDING_DINO_CONFIG,
|
166 |
+
checkpoint_path=GROUNDING_DINO_CHECKPOINT
|
167 |
+
)
|
168 |
+
except Exception as e:
|
169 |
+
print(f"FATAL ERROR during model initialization: {e}")
|
170 |
+
pipeline, depth_estimator, layout_generator = None, None, None
|
171 |
+
|
172 |
+
def predict_staged_image(input_image: Image.Image, prompt: str) -> Image.Image:
|
173 |
+
"""
|
174 |
+
Perform virtual staging inference given an empty room image and a prompt.
|
175 |
+
|
176 |
+
Args:
|
177 |
+
input_image (Image.Image): Input empty room image.
|
178 |
+
prompt (str): Staging prompt.
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
Image.Image: Virtually staged image.
|
182 |
+
"""
|
183 |
+
if pipeline is None:
|
184 |
+
return Image.new('RGB', (512, 512), color='red')
|
185 |
+
|
186 |
+
empty_image: Image.Image = input_image.convert("RGB").resize((1024, 1024))
|
187 |
+
canny_image_np: np.ndarray = cv2.Canny(np.array(empty_image), 100, 200)
|
188 |
+
canny_image: Image.Image = Image.fromarray(canny_image_np)
|
189 |
+
depth_map = depth_estimator(empty_image)['depth']
|
190 |
+
depth_image: Image.Image = depth_map.convert("RGB")
|
191 |
+
|
192 |
+
negative_prompt: str = "low quality, bad lighting, ugly, deformed, blurry, watermark, text, signature"
|
193 |
+
generator = torch.manual_seed(42)
|
194 |
+
|
195 |
+
control_images_phase1 = [empty_image, canny_image, depth_image]
|
196 |
+
controlnet_conditioning_scale_phase1 = [1.0, 0.3, 0.3]
|
197 |
+
|
198 |
+
pseudo_staged_image: Image.Image = pipeline(
|
199 |
+
prompt=prompt,
|
200 |
+
negative_prompt=negative_prompt,
|
201 |
+
image=empty_image,
|
202 |
+
mask_image=Image.new('L', (1024, 1024), 255),
|
203 |
+
control_image=control_images_phase1,
|
204 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale_phase1,
|
205 |
+
num_inference_steps=30,
|
206 |
+
generator=generator,
|
207 |
+
guidance_scale=9.5
|
208 |
+
).images[0]
|
209 |
+
|
210 |
+
FURNITURE_QUERY: str = "furniture . sofa . chair . table . lamp . rug . plant . decor . art"
|
211 |
+
BOX_THRESHOLD: float = 0.3
|
212 |
+
|
213 |
+
layout_mask_np: np.ndarray = layout_generator.generate_mask_from_text(
|
214 |
+
pseudo_staged_image,
|
215 |
+
text_prompt=FURNITURE_QUERY,
|
216 |
+
box_threshold=BOX_THRESHOLD
|
217 |
+
)
|
218 |
+
|
219 |
+
if np.sum(layout_mask_np) == 0:
|
220 |
+
layout_mask_np[0:5, 0:5] = 255
|
221 |
+
|
222 |
+
layout_mask: Image.Image = Image.fromarray(layout_mask_np)
|
223 |
+
|
224 |
+
final_control_images = [empty_image, canny_image, depth_image]
|
225 |
+
final_conditioning_scale = [1.0, 0.1, 0.1]
|
226 |
+
|
227 |
+
result_image: Image.Image = pipeline(
|
228 |
+
prompt=prompt,
|
229 |
+
negative_prompt=negative_prompt,
|
230 |
+
image=empty_image,
|
231 |
+
mask_image=layout_mask,
|
232 |
+
control_image=final_control_images,
|
233 |
+
controlnet_conditioning_scale=final_conditioning_scale,
|
234 |
+
num_inference_steps=50,
|
235 |
+
generator=generator,
|
236 |
+
guidance_scale=7.5
|
237 |
+
).images[0]
|
238 |
+
|
239 |
+
return result_image
|
240 |
+
|
241 |
+
description_content: str = """
|
242 |
+
This project leverages a powerful pipeline of generative AI models to perform virtual staging on empty room images.
|
243 |
+
The primary goal is to create high-quality, photorealistic staged interior designs while meticulously preserving the original room's structural integrity and 3D geometry.
|
244 |
+
|
245 |
+
### Approach
|
246 |
+
Our approach is built around a synergistic, multi-stage process, where each component is chosen for its specific strengths:
|
247 |
+
|
248 |
+
1. **Creative Layout Generation:** An initial "pseudo-staged" image is generated to populate the room with furniture ideas based on the prompt.
|
249 |
+
2. **Text-Guided Masking:** Grounding DINO and SAM identify and precisely segment objects within the pseudo-staged image to create a 'staging area' mask.
|
250 |
+
3. **Multi-ControlNet Guided Inpainting:** The final staged image is generated in a single pass, using your trained Inpainting ControlNet, plus Canny and Depth ControlNets, guided by the generated mask, to inject furniture while preserving original room geometry.
|
251 |
+
|
252 |
+
---
|
253 |
+
**Input an empty room image and describe your desired staging style!**
|
254 |
+
"""
|
255 |
+
|
256 |
+
gr.Interface(
|
257 |
+
fn=predict_staged_image,
|
258 |
+
inputs=[
|
259 |
+
gr.Image(type="pil", label="Upload Empty Room Image"),
|
260 |
+
gr.Textbox(label="Staging Prompt", placeholder="e.g., 'modern interior styling, add detailed furniture, rugs, indoor plants, wall art, photorealistic materials, soft textures, warm tones'", lines=2)
|
261 |
+
],
|
262 |
+
outputs=gr.Image(type="pil", label="Virtually Staged Image"),
|
263 |
+
title="Virtual Staging AI",
|
264 |
+
description=description_content,
|
265 |
+
allow_flagging="never",
|
266 |
+
examples=[
|
267 |
+
["./example_images/empty_room_1.png", "A cozy living room with a mid-century modern sofa, a wooden coffee table, and a large abstract painting."],
|
268 |
+
["./example_images/empty_room_2.png", "A luxurious bedroom with a king-sized bed, velvet headboard, and soft, ambient lighting."]
|
269 |
+
]
|
270 |
+
).launch(debug=True, share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# requirements.txt
|
2 |
+
torch==2.3.0
|
3 |
+
torchvision==0.18.0
|
4 |
+
pytorch-lightning==2.2.1
|
5 |
+
diffusers==0.27.2
|
6 |
+
transformers==4.39.3
|
7 |
+
accelerate==0.28.0
|
8 |
+
opencv-python-headless==4.9.0.80
|
9 |
+
numpy==1.26.4
|
10 |
+
Pillow==10.2.0
|
11 |
+
tqdm==4.66.2
|
12 |
+
einops
|
13 |
+
gradio==4.26.0
|
14 |
+
xformers==0.0.26.post1
|
15 |
+
peft==0.10.0
|
16 |
+
huggingface-hub==0.25.2
|
17 |
+
groundingdino-py
|
18 |
+
ultralytics==8.2.2
|
19 |
+
addict
|
20 |
+
yapf
|
weights/groundingdino_swint_ogc.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b3ca2563c77c69f651d7bd133e97139c186df06231157a64c507099c52bc799
|
3 |
+
size 693997677
|