Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from byaldi import RAGMultiModalModel
|
5 |
+
import tempfile
|
6 |
+
|
7 |
+
# Function to upload image, run inference, and display output
|
8 |
+
def upload_image_and_infer():
|
9 |
+
# Step 1: Allow user to upload an image file
|
10 |
+
uploaded_file = st.file_uploader("Upload an image file", type=["jpg", "png", "jpeg"])
|
11 |
+
|
12 |
+
if uploaded_file is not None:
|
13 |
+
# Step 2: Save uploaded image to temporary file
|
14 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
15 |
+
temp_file.write(uploaded_file.read())
|
16 |
+
temp_path = temp_file.name
|
17 |
+
|
18 |
+
# Step 3: Display the uploaded image
|
19 |
+
image = Image.open(temp_path)
|
20 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
21 |
+
|
22 |
+
# Step 4: Load the RAGMultiModalModel and processor
|
23 |
+
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
24 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
25 |
+
"Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int8", torch_dtype="auto", device_map="auto"
|
26 |
+
)
|
27 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int8")
|
28 |
+
|
29 |
+
# Assuming `results` contains the page number information
|
30 |
+
text_query = "extract the details?"
|
31 |
+
RAG.index(
|
32 |
+
input_path=temp_path, # Using the uploaded image's temporary path
|
33 |
+
index_name="image_index",
|
34 |
+
store_collection_with_index=False,
|
35 |
+
overwrite=True
|
36 |
+
)
|
37 |
+
results = RAG.search(text_query, k=1)
|
38 |
+
|
39 |
+
# Step 5: Prepare messages for inference
|
40 |
+
image_index = results[0]["page_num"] - 1 # Get page number from the search result
|
41 |
+
messages = [
|
42 |
+
{
|
43 |
+
"role": "user",
|
44 |
+
"content": [
|
45 |
+
{
|
46 |
+
"type": "image",
|
47 |
+
"image": image, # Use the uploaded image
|
48 |
+
},
|
49 |
+
{"type": "text", "text": text_query},
|
50 |
+
],
|
51 |
+
}
|
52 |
+
]
|
53 |
+
|
54 |
+
# Step 6: Prepare input for the model
|
55 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
56 |
+
image_inputs, video_inputs = process_vision_info(messages) # Assuming process_vision_info is defined
|
57 |
+
|
58 |
+
# Tokenizing and preparing inputs
|
59 |
+
inputs = processor(
|
60 |
+
text=[text],
|
61 |
+
images=image_inputs,
|
62 |
+
videos=video_inputs,
|
63 |
+
padding=True,
|
64 |
+
return_tensors="pt",
|
65 |
+
)
|
66 |
+
inputs = inputs.to("cuda")
|
67 |
+
|
68 |
+
# Step 7: Inference and generate output
|
69 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
70 |
+
generated_ids_trimmed = [
|
71 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
72 |
+
]
|
73 |
+
|
74 |
+
# Decode the generated output
|
75 |
+
output_text = processor.batch_decode(
|
76 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
77 |
+
)
|
78 |
+
|
79 |
+
# Step 8: Display the output in Streamlit
|
80 |
+
st.write("Generated Output:", output_text)
|
81 |
+
else:
|
82 |
+
st.write("Please upload an image.")
|
83 |
+
|
84 |
+
# Helper function to process images (replace with actual implementation if needed)
|
85 |
+
def process_vision_info(messages):
|
86 |
+
image_inputs = [msg['content'][0]['image'] for msg in messages if 'image' in msg['content'][0]]
|
87 |
+
video_inputs = [] # Assuming no video inputs for now
|
88 |
+
return image_inputs, video_inputs
|
89 |
+
|
90 |
+
# Run the function inside the Streamlit app
|
91 |
+
upload_image_and_infer()
|