Niharmahesh commited on
Commit
07c4a28
·
verified ·
1 Parent(s): 38332c9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +165 -85
app.py CHANGED
@@ -272,103 +272,183 @@ def display_projects():
272
  - **Reference**: [Link to Project](https://github.com/niharpalem/squateasy_DL)
273
  """)
274
  def display_skills():
275
- st.markdown('## Skills')
 
 
 
 
 
 
 
 
 
 
 
 
 
276
 
277
  # Programming & Core Technologies
278
- st.markdown("### 💻 Programming & Core Technologies")
279
- st.markdown("""
280
- - **Programming Languages**: Python (Advanced), SQL (Advanced)
281
- - **Database Systems**:
282
- - Relational: MySQL, PostgreSQL
283
- - NoSQL: MongoDB
284
- - Data Warehouses: Snowflake, Redshift
285
- - **Version Control**: Git, GitHub
286
- - **Development Tools**: Docker, Microsoft Office Suite (Excel, Word, PowerPoint)
287
- """)
 
 
 
 
 
 
 
 
 
288
 
289
  # AI & Machine Learning
290
- st.markdown("### 🤖 AI & Machine Learning")
291
- st.markdown("""
292
- - **Machine Learning Frameworks**:
293
- - PyTorch, TensorFlow, Scikit-Learn
294
- - XGBoost, Random Forest, AdaBoost
295
- - **Deep Learning**:
296
- - Vision Transformers, ResNet Architectures
297
- - Neural Networks, BiLSTM
298
- - **LLM & NLP**:
299
- - LLaMA-3 (70B/8B), GPT-3.5
300
- - Sentence Transformers
301
- - Advanced Prompt Engineering
302
- - Multi-agent Architectures
303
- - **Computer Vision**:
304
- - MediaPipe
305
- - Image Processing
306
- """)
 
 
 
 
 
 
 
 
 
 
307
 
308
  # Data Engineering & Cloud
309
- st.markdown("### ☁️ Data Engineering & Cloud")
310
- st.markdown("""
311
- - **Cloud Platforms**:
312
- - AWS (Certified)
313
- - Google Cloud Platform (GCP)
314
- - **Big Data Technologies**:
315
- - Apache Spark (PySpark)
316
- - Apache Airflow
317
- - BigQuery
318
- - **Data Pipeline Tools**:
319
- - ETL/ELT Pipeline Design
320
- - Workflow Orchestration
321
- - Concurrent Processing
322
- """)
 
 
 
 
 
 
 
 
 
 
 
323
 
324
  # Data Architecture & Analytics
325
- st.markdown("### 📊 Data Architecture & Analytics")
326
- st.markdown("""
327
- - **Data Modeling**:
328
- - OLAP/OLTP Systems
329
- - Star/Snowflake Schema
330
- - Data Normalization
331
- - **Analytics Techniques**:
332
- - Streaming Analytics
333
- - Batch Processing
334
- - Time Series Analysis
335
- - **Data Processing**:
336
- - Pandas, NumPy
337
- - Data Wrangling
338
- - Feature Engineering
339
- """)
 
 
 
 
 
 
 
 
 
 
 
340
 
341
  # Visualization & Deployment
342
- st.markdown("### 📈 Visualization & Deployment")
343
- st.markdown("""
344
- - **Visualization Tools**:
345
- - Tableau
346
- - Power BI
347
- - Plotly, Seaborn, Matplotlib
348
- - **Deployment & Interface**:
349
- - Streamlit
350
- - Flask
351
- - Web Application Development
352
- - **Collaboration Tools**:
353
- - JIRA
354
- - Notion
355
- - Project Management Tools
356
- """)
 
 
 
 
 
 
 
 
 
 
 
 
357
 
358
  # Specialized Systems
359
- st.markdown("### 🔧 Specialized Systems")
360
- st.markdown("""
361
- - **Recommender Systems**:
362
- - Hybrid Filtering (TF-IDF + Collaborative)
363
- - Matrix Factorization (SVD)
364
- - **Ensemble Methods**:
365
- - Multi-model Consensus Systems
366
- - Classifier Combinations
367
- - **Performance Optimization**:
368
- - CUDA Acceleration
369
- - Parallel Processing
370
- - Resource Management
371
- """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372
  def display_apps():
373
  st.markdown('## Apps')
374
  st.markdown("""
 
272
  - **Reference**: [Link to Project](https://github.com/niharpalem/squateasy_DL)
273
  """)
274
  def display_skills():
275
+ st.title('Skills')
276
+
277
+ # Define tab titles
278
+ tab_titles = [
279
+ "Programming & Core",
280
+ "AI & ML",
281
+ "Data Engineering",
282
+ "Data Architecture",
283
+ "Visualization",
284
+ "Specialized Systems"
285
+ ]
286
+
287
+ # Create tabs
288
+ tabs = st.tabs(tab_titles)
289
 
290
  # Programming & Core Technologies
291
+ with tabs[0]:
292
+ st.header("Programming & Core Technologies")
293
+ st.markdown("""
294
+ - **Programming Languages**:
295
+ Python (Advanced)
296
+ SQL (Advanced)
297
+ Shell Scripting
298
+
299
+ - **Database Systems**:
300
+ • Relational: MySQL, PostgreSQL
301
+ • NoSQL: MongoDB
302
+ • Data Warehouses: Snowflake, Redshift
303
+
304
+ - **Development Tools**:
305
+ • Version Control: Git, GitHub
306
+ • Containerization: Docker
307
+ • IDE: VS Code, PyCharm
308
+ • Microsoft Office Suite
309
+ """)
310
 
311
  # AI & Machine Learning
312
+ with tabs[1]:
313
+ st.header("AI & Machine Learning")
314
+ st.markdown("""
315
+ - **Machine Learning Frameworks**:
316
+ PyTorch
317
+ TensorFlow
318
+ • Scikit-Learn
319
+ XGBoost, Random Forest, AdaBoost
320
+
321
+ - **Deep Learning**:
322
+ Vision Transformers
323
+ ResNet Architectures
324
+ Neural Networks
325
+ BiLSTM
326
+
327
+ - **LLM & NLP**:
328
+ • LLaMA-3 (70B/8B)
329
+ • GPT-3.5
330
+ • Sentence Transformers
331
+ • Advanced Prompt Engineering
332
+ • Multi-agent Architectures
333
+
334
+ - **Computer Vision**:
335
+ • MediaPipe
336
+ • OpenCV
337
+ • Image Processing Pipelines
338
+ """)
339
 
340
  # Data Engineering & Cloud
341
+ with tabs[2]:
342
+ st.header("Data Engineering & Cloud")
343
+ st.markdown("""
344
+ - **Cloud Platforms**:
345
+ AWS (Certified)
346
+ Google Cloud Platform (GCP)
347
+ Cloud Architecture Design
348
+
349
+ - **Big Data Technologies**:
350
+ Apache Spark (PySpark)
351
+ Apache Airflow
352
+ BigQuery
353
+ Hadoop Ecosystem
354
+
355
+ - **Data Pipeline Tools**:
356
+ • ETL/ELT Pipeline Design
357
+ • Workflow Orchestration
358
+ • Concurrent Processing
359
+ • Real-time Data Streaming
360
+
361
+ - **Infrastructure**:
362
+ • CI/CD Pipelines
363
+ • Infrastructure as Code
364
+ • Kubernetes Basics
365
+ """)
366
 
367
  # Data Architecture & Analytics
368
+ with tabs[3]:
369
+ st.header("Data Architecture & Analytics")
370
+ st.markdown("""
371
+ - **Data Modeling**:
372
+ OLAP/OLTP Systems
373
+ Star/Snowflake Schema
374
+ Data Normalization
375
+ Database Optimization
376
+
377
+ - **Analytics Techniques**:
378
+ Streaming Analytics
379
+ Batch Processing
380
+ Time Series Analysis
381
+ Statistical Analysis
382
+
383
+ - **Data Processing**:
384
+ • Pandas, NumPy
385
+ • Data Wrangling
386
+ • Feature Engineering
387
+ • Data Quality Assurance
388
+
389
+ - **Performance Optimization**:
390
+ • Query Optimization
391
+ • Indexing Strategies
392
+ • Caching Mechanisms
393
+ """)
394
 
395
  # Visualization & Deployment
396
+ with tabs[4]:
397
+ st.header("Visualization & Tools")
398
+ st.markdown("""
399
+ - **Business Intelligence**:
400
+ Tableau
401
+ Power BI
402
+ Dashboard Design
403
+ KPI Monitoring
404
+
405
+ - **Technical Visualization**:
406
+ Plotly
407
+ Seaborn
408
+ Matplotlib
409
+ Interactive Charts
410
+
411
+ - **Deployment & Interface**:
412
+ • Streamlit
413
+ • Flask
414
+ • Web Development
415
+ • API Design
416
+
417
+ - **Collaboration Tools**:
418
+ • JIRA
419
+ • Notion
420
+ • Git Workflow
421
+ • Agile Methodologies
422
+ """)
423
 
424
  # Specialized Systems
425
+ with tabs[5]:
426
+ st.header("Specialized Systems")
427
+ st.markdown("""
428
+ - **Recommender Systems**:
429
+ Hybrid Filtering Techniques
430
+ • Content-Based Filtering
431
+ Collaborative Filtering
432
+ Matrix Factorization (SVD)
433
+
434
+ - **Ensemble Methods**:
435
+ • Multi-model Consensus Systems
436
+ Classifier Combinations
437
+ • Voting Systems
438
+ • Stacking Implementations
439
+
440
+ - **Performance Optimization**:
441
+ • CUDA Acceleration
442
+ • Parallel Processing
443
+ • Resource Management
444
+ • Scalability Design
445
+
446
+ - **Custom Solutions**:
447
+ • Natural Language Processing
448
+ • Computer Vision Systems
449
+ • Time Series Forecasting
450
+ • Anomaly Detection
451
+ """)
452
  def display_apps():
453
  st.markdown('## Apps')
454
  st.markdown("""