Niharmahesh commited on
Commit
636b1bb
·
verified ·
1 Parent(s): fdb9c5f

Create projects.py

Browse files
Files changed (1) hide show
  1. projects.py +203 -0
projects.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ def display_projects():
3
+ st.title('My Projects')
4
+
5
+ # Define tab titles
6
+ tab_titles = [
7
+ "Resume & CV Crafter",
8
+ "Multi-Agent Job Search",
9
+ "Resume Easz",
10
+ "Job Easz",
11
+ "Bitcoin Lightning Optimization",
12
+ "National Infrastructure Monitoring",
13
+ "Stock Market Analysis",
14
+ "Twitter Trend Analysis",
15
+ "Restaurant Recommendation",
16
+ "ASL Translator",
17
+ "Squat Easy"
18
+ ]
19
+
20
+ # Create tabs
21
+ tabs = st.tabs(tab_titles)
22
+
23
+ # Add content to each tab
24
+ with tabs[0]:
25
+ st.subheader("LLM-powered Resume & CV Crafter")
26
+ st.markdown("""
27
+ - **Description**: Developed AI platform combining LLaMA-3 70B and Deepseek R1 with low-temperature settings for stable, tailored resume and CV generation
28
+ - **Key Features**:
29
+ • Smart Matching Algorithm analyzing profiles against job requirements
30
+ • LaTeX-Powered Resumes with professional formatting
31
+ • Automated 4-paragraph Cover Letter Generation
32
+ • Performance Metrics evaluating match quality
33
+ - **Technical Achievements**:
34
+ • Implemented dual-agent architecture: LLaMA-3 8B for profile analysis and 70B for LaTeX generation
35
+ • Engineered JSON schema validation system for error-free template integration
36
+ • Achieved 5,000+ LinkedIn impressions with 80% reduction in creation time
37
+ - **Technologies**: Streamlit, GROQ API (LLaMA-3 70B), LaTeX, JSON Schema
38
+ - **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Resume_and_CV_crafter)
39
+ """)
40
+
41
+ with tabs[1]:
42
+ st.subheader("Multi-Agent Job Search System")
43
+ st.markdown("""
44
+ - **Description**: Built an AI-powered job search assistant using dual-LLaMA architecture for comprehensive job matching and analysis
45
+ - **Key Features**:
46
+ • Real-time scraping across LinkedIn, Glassdoor, Indeed, ZipRecruiter
47
+ • Advanced resume parsing and job matching
48
+ • Intelligent compatibility scoring system
49
+ - **Technical Achievements**:
50
+ • Developed batch processing pipeline handling 60+ positions/search
51
+ • Reduced job search time by 80% through accurate matching
52
+ • Implemented specialized agents for input processing, scraping, and analysis
53
+ - **Technologies**: GROQ API, jobspy, Streamlit, Pandas, LLMOps
54
+ - **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Multi_Agent_Job_search_and_match)
55
+ """)
56
+
57
+ with tabs[2]:
58
+ st.subheader("Resume Easz")
59
+ st.markdown("""
60
+ - **Description**: Created an AI-driven resume analysis and enhancement tool using LLaMA 3.3 model
61
+ - **Key Features**:
62
+ • Quick and in-depth resume analysis options
63
+ • Comprehensive skill gap analysis
64
+ • ATS compatibility optimization
65
+ • Multiple output formats (DOCX, HTML, TXT)
66
+ - **Technical Implementation**:
67
+ • Integrated GROQ API for advanced language processing
68
+ • Built visual diff system for resume changes
69
+ • Developed custom prompt engineering pipeline
70
+ - **Technologies**: GROQ API, Streamlit, Python, LLM
71
+ - **Reference**: [Link to Project](https://resume-easz.streamlit.app/)
72
+ """)
73
+
74
+ with tabs[3]:
75
+ st.subheader("Job Easz")
76
+ st.markdown("""
77
+ - **Description**: Engineered comprehensive job aggregation platform for data roles with advanced analytics
78
+ - **Technical Achievements**:
79
+ • Designed Airflow pipeline with exponential backoff retry (120-480s intervals)
80
+ • Optimized concurrent processing reducing runtime from 2h to 40min
81
+ • Processes ~3000 daily job listings across various data roles
82
+ - **Key Features**:
83
+ • Daily updates with comprehensive job role coverage
84
+ • Custom filtering by role and location
85
+ • Interactive dashboard for market trends
86
+ • Automated ETL pipeline
87
+ - **Technologies**: Python, Airflow, ThreadPoolExecutor, Hugging Face Datasets
88
+ - **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/job_easz)
89
+ """)
90
+
91
+ with tabs[4]:
92
+ st.subheader("Bitcoin Lightning Path Optimization")
93
+ st.markdown("""
94
+ - **Description**: Advanced payment routing optimization system for Bitcoin Lightning Network
95
+ - **Technical Achievements**:
96
+ • Developed ML classifiers achieving 98.77-99.10% accuracy
97
+ • Implemented tri-model consensus system for optimal routing
98
+ • Engineered ensemble models with 0.98 F1-scores
99
+ - **Implementation Details**:
100
+ • Created simulation environment for multi-channel transactions
101
+ • Optimized graph-based algorithms for payment routing
102
+ • Integrated with Lightning payment interceptor
103
+ - **Technologies**: XGBoost, Random Forest, AdaBoost, Graph Algorithms
104
+ """)
105
+
106
+ with tabs[5]:
107
+ st.subheader("National Infrastructure Monitoring")
108
+ st.markdown("""
109
+ - **Description**: Developed satellite imagery analysis system for infrastructure change detection
110
+ - **Technical Achievements**:
111
+ • Fine-tuned ViT+ResNet-101 ensemble on 40GB satellite dataset
112
+ • Achieved 85% accuracy in change detection
113
+ • Implemented 8 parallel GPU threads for enhanced performance
114
+ - **Key Features**:
115
+ • Temporal analysis with 1km resolution
116
+ • Interactive map interface with bounding box selection
117
+ • Automatic image chipping for 256x256 inputs
118
+ • Contrast adjustment optimization
119
+ - **Technologies**: Change ViT Model, Google Earth Engine, PyTorch, Computer Vision
120
+ - **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Data298)
121
+ """)
122
+
123
+ with tabs[6]:
124
+ st.subheader("Stock Market Analysis with OpenAI Integration")
125
+ st.markdown("""
126
+ - **Description**: Created comprehensive stock market analysis system with multilingual capabilities
127
+ - **Technical Achievements**:
128
+ • Built Spark streaming pipeline with 30% efficiency improvement
129
+ • Orchestrated Airflow Docker pipeline for Snowflake integration
130
+ • Developed bilingual GPT-3.5 chatbot for SQL query generation
131
+ - **Key Features**:
132
+ • Real-time financial metric calculations
133
+ • Custom indicator generation
134
+ • Multilingual query support
135
+ • Automated data warehousing
136
+ - **Technologies**: PySpark, Apache Airflow, Snowflake, OpenAI GPT-3.5
137
+ """)
138
+
139
+ with tabs[7]:
140
+ st.subheader("Twitter Trend Analysis")
141
+ st.markdown("""
142
+ - **Description**: Engineered comprehensive Twitter analytics platform using GCP services
143
+ - **Technical Achievements**:
144
+ • Developed GCP pipeline processing 40k tweets
145
+ • Achieved 40% efficiency improvement through custom Airflow operators
146
+ • Implemented real-time trend analysis algorithms
147
+ - **Key Features**:
148
+ • Automated ETL workflows
149
+ • Interactive Tableau dashboards
150
+ • Viral metrics tracking
151
+ • Engagement rate calculations
152
+ - **Technologies**: Google Cloud Platform, BigQuery, Apache Airflow, Tableau
153
+ """)
154
+
155
+ with tabs[8]:
156
+ st.subheader("Restaurant Recommendation System")
157
+ st.markdown("""
158
+ - **Description**: Built hybrid recommendation system combining multiple filtering approaches
159
+ - **Technical Achievements**:
160
+ • Created hybrid TF-IDF and SVD-based filtering system
161
+ • Achieved 43% improvement in recommendation relevance
162
+ • Reduced computation time by 65%
163
+ - **Key Features**:
164
+ • Location-based suggestions
165
+ • Personalized recommendations
166
+ • Interactive web interface
167
+ • Efficient matrix factorization
168
+ - **Technologies**: Collaborative Filtering, Content-Based Filtering, Flask, Folium
169
+ """)
170
+
171
+ with tabs[9]:
172
+ st.subheader("ASL Translator")
173
+ st.markdown("""
174
+ - **Description**: Developed real-time American Sign Language translation system
175
+ - **Technical Achievements**:
176
+ • Achieved 95% accuracy in real-time gesture interpretation
177
+ • Implemented adaptive hand skeleton GIF generator
178
+ • Optimized MediaPipe integration for point detection
179
+ - **Key Features**:
180
+ • Real-time hand tracking
181
+ • Visual feedback system
182
+ • Intuitive gesture recognition
183
+ • Accessible interface
184
+ - **Technologies**: MediaPipe Hand Detection, Random Forest, Hugging Face Platform
185
+ - **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/slr-easz)
186
+ """)
187
+
188
+ with tabs[10]:
189
+ st.subheader("Squat Easy")
190
+ st.markdown("""
191
+ - **Description**: Developed deep learning system for squat form analysis and error detection
192
+ - **Technical Achievements**:
193
+ • Engineered custom BiLSTM architecture in PyTorch
194
+ • Achieved 81% training and 75% test accuracy
195
+ • Implemented CUDA-based GPU acceleration
196
+ - **Key Features**:
197
+ • Real-time form analysis
198
+ • Six-type error classification
199
+ • Video processing pipeline
200
+ • Performance optimization
201
+ - **Technologies**: PyTorch, BiLSTM, CUDA, Object-Oriented Programming
202
+ - **Reference**: [Link to Project](https://github.com/niharpalem/squateasy_DL)
203
+ """)