Spaces:
Running
Running
Create projects.py
Browse files- projects.py +203 -0
projects.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
def display_projects():
|
3 |
+
st.title('My Projects')
|
4 |
+
|
5 |
+
# Define tab titles
|
6 |
+
tab_titles = [
|
7 |
+
"Resume & CV Crafter",
|
8 |
+
"Multi-Agent Job Search",
|
9 |
+
"Resume Easz",
|
10 |
+
"Job Easz",
|
11 |
+
"Bitcoin Lightning Optimization",
|
12 |
+
"National Infrastructure Monitoring",
|
13 |
+
"Stock Market Analysis",
|
14 |
+
"Twitter Trend Analysis",
|
15 |
+
"Restaurant Recommendation",
|
16 |
+
"ASL Translator",
|
17 |
+
"Squat Easy"
|
18 |
+
]
|
19 |
+
|
20 |
+
# Create tabs
|
21 |
+
tabs = st.tabs(tab_titles)
|
22 |
+
|
23 |
+
# Add content to each tab
|
24 |
+
with tabs[0]:
|
25 |
+
st.subheader("LLM-powered Resume & CV Crafter")
|
26 |
+
st.markdown("""
|
27 |
+
- **Description**: Developed AI platform combining LLaMA-3 70B and Deepseek R1 with low-temperature settings for stable, tailored resume and CV generation
|
28 |
+
- **Key Features**:
|
29 |
+
• Smart Matching Algorithm analyzing profiles against job requirements
|
30 |
+
• LaTeX-Powered Resumes with professional formatting
|
31 |
+
• Automated 4-paragraph Cover Letter Generation
|
32 |
+
• Performance Metrics evaluating match quality
|
33 |
+
- **Technical Achievements**:
|
34 |
+
• Implemented dual-agent architecture: LLaMA-3 8B for profile analysis and 70B for LaTeX generation
|
35 |
+
• Engineered JSON schema validation system for error-free template integration
|
36 |
+
• Achieved 5,000+ LinkedIn impressions with 80% reduction in creation time
|
37 |
+
- **Technologies**: Streamlit, GROQ API (LLaMA-3 70B), LaTeX, JSON Schema
|
38 |
+
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Resume_and_CV_crafter)
|
39 |
+
""")
|
40 |
+
|
41 |
+
with tabs[1]:
|
42 |
+
st.subheader("Multi-Agent Job Search System")
|
43 |
+
st.markdown("""
|
44 |
+
- **Description**: Built an AI-powered job search assistant using dual-LLaMA architecture for comprehensive job matching and analysis
|
45 |
+
- **Key Features**:
|
46 |
+
• Real-time scraping across LinkedIn, Glassdoor, Indeed, ZipRecruiter
|
47 |
+
• Advanced resume parsing and job matching
|
48 |
+
• Intelligent compatibility scoring system
|
49 |
+
- **Technical Achievements**:
|
50 |
+
• Developed batch processing pipeline handling 60+ positions/search
|
51 |
+
• Reduced job search time by 80% through accurate matching
|
52 |
+
• Implemented specialized agents for input processing, scraping, and analysis
|
53 |
+
- **Technologies**: GROQ API, jobspy, Streamlit, Pandas, LLMOps
|
54 |
+
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Multi_Agent_Job_search_and_match)
|
55 |
+
""")
|
56 |
+
|
57 |
+
with tabs[2]:
|
58 |
+
st.subheader("Resume Easz")
|
59 |
+
st.markdown("""
|
60 |
+
- **Description**: Created an AI-driven resume analysis and enhancement tool using LLaMA 3.3 model
|
61 |
+
- **Key Features**:
|
62 |
+
• Quick and in-depth resume analysis options
|
63 |
+
• Comprehensive skill gap analysis
|
64 |
+
• ATS compatibility optimization
|
65 |
+
• Multiple output formats (DOCX, HTML, TXT)
|
66 |
+
- **Technical Implementation**:
|
67 |
+
• Integrated GROQ API for advanced language processing
|
68 |
+
• Built visual diff system for resume changes
|
69 |
+
• Developed custom prompt engineering pipeline
|
70 |
+
- **Technologies**: GROQ API, Streamlit, Python, LLM
|
71 |
+
- **Reference**: [Link to Project](https://resume-easz.streamlit.app/)
|
72 |
+
""")
|
73 |
+
|
74 |
+
with tabs[3]:
|
75 |
+
st.subheader("Job Easz")
|
76 |
+
st.markdown("""
|
77 |
+
- **Description**: Engineered comprehensive job aggregation platform for data roles with advanced analytics
|
78 |
+
- **Technical Achievements**:
|
79 |
+
• Designed Airflow pipeline with exponential backoff retry (120-480s intervals)
|
80 |
+
• Optimized concurrent processing reducing runtime from 2h to 40min
|
81 |
+
• Processes ~3000 daily job listings across various data roles
|
82 |
+
- **Key Features**:
|
83 |
+
• Daily updates with comprehensive job role coverage
|
84 |
+
• Custom filtering by role and location
|
85 |
+
• Interactive dashboard for market trends
|
86 |
+
• Automated ETL pipeline
|
87 |
+
- **Technologies**: Python, Airflow, ThreadPoolExecutor, Hugging Face Datasets
|
88 |
+
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/job_easz)
|
89 |
+
""")
|
90 |
+
|
91 |
+
with tabs[4]:
|
92 |
+
st.subheader("Bitcoin Lightning Path Optimization")
|
93 |
+
st.markdown("""
|
94 |
+
- **Description**: Advanced payment routing optimization system for Bitcoin Lightning Network
|
95 |
+
- **Technical Achievements**:
|
96 |
+
• Developed ML classifiers achieving 98.77-99.10% accuracy
|
97 |
+
• Implemented tri-model consensus system for optimal routing
|
98 |
+
• Engineered ensemble models with 0.98 F1-scores
|
99 |
+
- **Implementation Details**:
|
100 |
+
• Created simulation environment for multi-channel transactions
|
101 |
+
• Optimized graph-based algorithms for payment routing
|
102 |
+
• Integrated with Lightning payment interceptor
|
103 |
+
- **Technologies**: XGBoost, Random Forest, AdaBoost, Graph Algorithms
|
104 |
+
""")
|
105 |
+
|
106 |
+
with tabs[5]:
|
107 |
+
st.subheader("National Infrastructure Monitoring")
|
108 |
+
st.markdown("""
|
109 |
+
- **Description**: Developed satellite imagery analysis system for infrastructure change detection
|
110 |
+
- **Technical Achievements**:
|
111 |
+
• Fine-tuned ViT+ResNet-101 ensemble on 40GB satellite dataset
|
112 |
+
• Achieved 85% accuracy in change detection
|
113 |
+
• Implemented 8 parallel GPU threads for enhanced performance
|
114 |
+
- **Key Features**:
|
115 |
+
• Temporal analysis with 1km resolution
|
116 |
+
• Interactive map interface with bounding box selection
|
117 |
+
• Automatic image chipping for 256x256 inputs
|
118 |
+
• Contrast adjustment optimization
|
119 |
+
- **Technologies**: Change ViT Model, Google Earth Engine, PyTorch, Computer Vision
|
120 |
+
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/Data298)
|
121 |
+
""")
|
122 |
+
|
123 |
+
with tabs[6]:
|
124 |
+
st.subheader("Stock Market Analysis with OpenAI Integration")
|
125 |
+
st.markdown("""
|
126 |
+
- **Description**: Created comprehensive stock market analysis system with multilingual capabilities
|
127 |
+
- **Technical Achievements**:
|
128 |
+
• Built Spark streaming pipeline with 30% efficiency improvement
|
129 |
+
• Orchestrated Airflow Docker pipeline for Snowflake integration
|
130 |
+
• Developed bilingual GPT-3.5 chatbot for SQL query generation
|
131 |
+
- **Key Features**:
|
132 |
+
• Real-time financial metric calculations
|
133 |
+
• Custom indicator generation
|
134 |
+
• Multilingual query support
|
135 |
+
• Automated data warehousing
|
136 |
+
- **Technologies**: PySpark, Apache Airflow, Snowflake, OpenAI GPT-3.5
|
137 |
+
""")
|
138 |
+
|
139 |
+
with tabs[7]:
|
140 |
+
st.subheader("Twitter Trend Analysis")
|
141 |
+
st.markdown("""
|
142 |
+
- **Description**: Engineered comprehensive Twitter analytics platform using GCP services
|
143 |
+
- **Technical Achievements**:
|
144 |
+
• Developed GCP pipeline processing 40k tweets
|
145 |
+
• Achieved 40% efficiency improvement through custom Airflow operators
|
146 |
+
• Implemented real-time trend analysis algorithms
|
147 |
+
- **Key Features**:
|
148 |
+
• Automated ETL workflows
|
149 |
+
• Interactive Tableau dashboards
|
150 |
+
• Viral metrics tracking
|
151 |
+
• Engagement rate calculations
|
152 |
+
- **Technologies**: Google Cloud Platform, BigQuery, Apache Airflow, Tableau
|
153 |
+
""")
|
154 |
+
|
155 |
+
with tabs[8]:
|
156 |
+
st.subheader("Restaurant Recommendation System")
|
157 |
+
st.markdown("""
|
158 |
+
- **Description**: Built hybrid recommendation system combining multiple filtering approaches
|
159 |
+
- **Technical Achievements**:
|
160 |
+
• Created hybrid TF-IDF and SVD-based filtering system
|
161 |
+
• Achieved 43% improvement in recommendation relevance
|
162 |
+
• Reduced computation time by 65%
|
163 |
+
- **Key Features**:
|
164 |
+
• Location-based suggestions
|
165 |
+
• Personalized recommendations
|
166 |
+
• Interactive web interface
|
167 |
+
• Efficient matrix factorization
|
168 |
+
- **Technologies**: Collaborative Filtering, Content-Based Filtering, Flask, Folium
|
169 |
+
""")
|
170 |
+
|
171 |
+
with tabs[9]:
|
172 |
+
st.subheader("ASL Translator")
|
173 |
+
st.markdown("""
|
174 |
+
- **Description**: Developed real-time American Sign Language translation system
|
175 |
+
- **Technical Achievements**:
|
176 |
+
• Achieved 95% accuracy in real-time gesture interpretation
|
177 |
+
• Implemented adaptive hand skeleton GIF generator
|
178 |
+
• Optimized MediaPipe integration for point detection
|
179 |
+
- **Key Features**:
|
180 |
+
• Real-time hand tracking
|
181 |
+
• Visual feedback system
|
182 |
+
• Intuitive gesture recognition
|
183 |
+
• Accessible interface
|
184 |
+
- **Technologies**: MediaPipe Hand Detection, Random Forest, Hugging Face Platform
|
185 |
+
- **Reference**: [Link to Project](https://huggingface.co/spaces/Niharmahesh/slr-easz)
|
186 |
+
""")
|
187 |
+
|
188 |
+
with tabs[10]:
|
189 |
+
st.subheader("Squat Easy")
|
190 |
+
st.markdown("""
|
191 |
+
- **Description**: Developed deep learning system for squat form analysis and error detection
|
192 |
+
- **Technical Achievements**:
|
193 |
+
• Engineered custom BiLSTM architecture in PyTorch
|
194 |
+
• Achieved 81% training and 75% test accuracy
|
195 |
+
• Implemented CUDA-based GPU acceleration
|
196 |
+
- **Key Features**:
|
197 |
+
• Real-time form analysis
|
198 |
+
• Six-type error classification
|
199 |
+
• Video processing pipeline
|
200 |
+
• Performance optimization
|
201 |
+
- **Technologies**: PyTorch, BiLSTM, CUDA, Object-Oriented Programming
|
202 |
+
- **Reference**: [Link to Project](https://github.com/niharpalem/squateasy_DL)
|
203 |
+
""")
|