Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -274,14 +274,34 @@ def display_projects():
|
|
274 |
def display_skills():
|
275 |
st.title('Skills')
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
# Define tab titles
|
278 |
tab_titles = [
|
279 |
-
"Programming
|
280 |
"AI & ML",
|
281 |
-
"Data
|
282 |
-
"Data
|
283 |
-
"Visualization",
|
284 |
-
"Specialized
|
285 |
]
|
286 |
|
287 |
# Create tabs
|
@@ -290,165 +310,215 @@ def display_skills():
|
|
290 |
# Programming & Core Technologies
|
291 |
with tabs[0]:
|
292 |
st.header("Programming & Core Technologies")
|
293 |
-
st.
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
# AI & Machine Learning
|
312 |
with tabs[1]:
|
313 |
st.header("AI & Machine Learning")
|
314 |
-
st.
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
|
|
|
|
|
|
339 |
|
340 |
-
# Data Engineering
|
341 |
with tabs[2]:
|
342 |
-
st.header("Data Engineering
|
343 |
-
st.
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
• Infrastructure as Code
|
364 |
-
• Kubernetes Basics
|
365 |
-
""")
|
366 |
|
367 |
-
# Data Architecture
|
368 |
with tabs[3]:
|
369 |
-
st.header("Data Architecture
|
370 |
-
st.
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
• Feature Engineering
|
387 |
-
• Data Quality Assurance
|
388 |
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
|
395 |
-
# Visualization
|
396 |
with tabs[4]:
|
397 |
st.header("Visualization & Tools")
|
398 |
-
st.
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
|
|
|
|
|
|
|
|
410 |
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
|
|
|
|
423 |
|
424 |
# Specialized Systems
|
425 |
with tabs[5]:
|
426 |
st.header("Specialized Systems")
|
427 |
-
st.
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
• Computer Vision Systems
|
449 |
-
• Time Series Forecasting
|
450 |
-
• Anomaly Detection
|
451 |
-
""")
|
452 |
def display_apps():
|
453 |
st.markdown('## Apps')
|
454 |
st.markdown("""
|
|
|
274 |
def display_skills():
|
275 |
st.title('Skills')
|
276 |
|
277 |
+
# Custom CSS to ensure even spacing
|
278 |
+
st.markdown("""
|
279 |
+
<style>
|
280 |
+
.stTabs [data-baseweb="tab-list"] {
|
281 |
+
gap: 2px;
|
282 |
+
}
|
283 |
+
.stTabs [data-baseweb="tab"] {
|
284 |
+
height: 50px;
|
285 |
+
white-space: pre-wrap;
|
286 |
+
background-color: #FFFFFF;
|
287 |
+
border-radius: 4px;
|
288 |
+
color: #000000;
|
289 |
+
padding: 10px 20px;
|
290 |
+
}
|
291 |
+
.stTabs [aria-selected="true"] {
|
292 |
+
background-color: #F0F2F6;
|
293 |
+
}
|
294 |
+
</style>
|
295 |
+
""", unsafe_allow_html=True)
|
296 |
+
|
297 |
# Define tab titles
|
298 |
tab_titles = [
|
299 |
+
"Programming\n& Core",
|
300 |
"AI & ML",
|
301 |
+
"Data\nEngineering",
|
302 |
+
"Data\nArchitecture",
|
303 |
+
"Visualization\n& Tools",
|
304 |
+
"Specialized\nSystems"
|
305 |
]
|
306 |
|
307 |
# Create tabs
|
|
|
310 |
# Programming & Core Technologies
|
311 |
with tabs[0]:
|
312 |
st.header("Programming & Core Technologies")
|
313 |
+
col1, col2 = st.columns(2)
|
314 |
+
|
315 |
+
with col1:
|
316 |
+
st.markdown("""
|
317 |
+
#### Programming
|
318 |
+
- **Languages**:
|
319 |
+
• Python (Advanced)
|
320 |
+
• SQL (Advanced)
|
321 |
+
• Shell Scripting
|
322 |
+
|
323 |
+
#### Databases
|
324 |
+
- **Systems**:
|
325 |
+
• MySQL, PostgreSQL
|
326 |
+
• MongoDB
|
327 |
+
• Snowflake, Redshift
|
328 |
+
""")
|
329 |
|
330 |
+
with col2:
|
331 |
+
st.markdown("""
|
332 |
+
#### Development
|
333 |
+
- **Tools**:
|
334 |
+
• Git, GitHub
|
335 |
+
• Docker
|
336 |
+
• VS Code, PyCharm
|
337 |
+
|
338 |
+
#### General
|
339 |
+
- **Productivity**:
|
340 |
+
• Office Suite
|
341 |
+
• Project Management
|
342 |
+
• Documentation
|
343 |
+
""")
|
344 |
|
345 |
# AI & Machine Learning
|
346 |
with tabs[1]:
|
347 |
st.header("AI & Machine Learning")
|
348 |
+
col1, col2 = st.columns(2)
|
349 |
+
|
350 |
+
with col1:
|
351 |
+
st.markdown("""
|
352 |
+
#### Frameworks
|
353 |
+
- **Machine Learning**:
|
354 |
+
• PyTorch
|
355 |
+
• TensorFlow
|
356 |
+
• Scikit-Learn
|
357 |
+
|
358 |
+
#### Deep Learning
|
359 |
+
- **Architectures**:
|
360 |
+
• Vision Transformers
|
361 |
+
• ResNet
|
362 |
+
• Neural Networks
|
363 |
+
• BiLSTM
|
364 |
+
""")
|
365 |
|
366 |
+
with col2:
|
367 |
+
st.markdown("""
|
368 |
+
#### LLM & NLP
|
369 |
+
- **Models & Tools**:
|
370 |
+
• LLaMA-3 (70B/8B)
|
371 |
+
• GPT-3.5
|
372 |
+
• Sentence Transformers
|
373 |
+
• Prompt Engineering
|
374 |
+
|
375 |
+
#### Computer Vision
|
376 |
+
- **Technologies**:
|
377 |
+
• MediaPipe
|
378 |
+
• OpenCV
|
379 |
+
• Image Processing
|
380 |
+
""")
|
381 |
|
382 |
+
# Data Engineering
|
383 |
with tabs[2]:
|
384 |
+
st.header("Data Engineering")
|
385 |
+
col1, col2 = st.columns(2)
|
386 |
+
|
387 |
+
with col1:
|
388 |
+
st.markdown("""
|
389 |
+
#### Cloud
|
390 |
+
- **Platforms**:
|
391 |
+
• AWS (Certified)
|
392 |
+
• GCP
|
393 |
+
• Cloud Architecture
|
394 |
+
|
395 |
+
#### Big Data
|
396 |
+
- **Technologies**:
|
397 |
+
• Apache Spark
|
398 |
+
• Apache Airflow
|
399 |
+
• BigQuery
|
400 |
+
• Hadoop
|
401 |
+
""")
|
402 |
|
403 |
+
with col2:
|
404 |
+
st.markdown("""
|
405 |
+
#### Pipeline Tools
|
406 |
+
- **Engineering**:
|
407 |
+
• ETL/ELT Design
|
408 |
+
• Workflow Orchestration
|
409 |
+
• Data Streaming
|
410 |
+
|
411 |
+
#### Infrastructure
|
412 |
+
- **DevOps**:
|
413 |
+
• CI/CD Pipelines
|
414 |
+
• Infrastructure as Code
|
415 |
+
• Kubernetes
|
416 |
+
""")
|
|
|
|
|
|
|
417 |
|
418 |
+
# Data Architecture
|
419 |
with tabs[3]:
|
420 |
+
st.header("Data Architecture")
|
421 |
+
col1, col2 = st.columns(2)
|
422 |
+
|
423 |
+
with col1:
|
424 |
+
st.markdown("""
|
425 |
+
#### Modeling
|
426 |
+
- **Design**:
|
427 |
+
• OLAP/OLTP Systems
|
428 |
+
• Star/Snowflake Schema
|
429 |
+
• Data Normalization
|
430 |
+
|
431 |
+
#### Analytics
|
432 |
+
- **Techniques**:
|
433 |
+
• Streaming Analytics
|
434 |
+
• Batch Processing
|
435 |
+
• Time Series Analysis
|
436 |
+
""")
|
|
|
|
|
437 |
|
438 |
+
with col2:
|
439 |
+
st.markdown("""
|
440 |
+
#### Processing
|
441 |
+
- **Tools**:
|
442 |
+
• Pandas, NumPy
|
443 |
+
• Data Wrangling
|
444 |
+
• Feature Engineering
|
445 |
+
|
446 |
+
#### Optimization
|
447 |
+
- **Performance**:
|
448 |
+
• Query Optimization
|
449 |
+
• Indexing Strategies
|
450 |
+
• Caching Systems
|
451 |
+
""")
|
452 |
|
453 |
+
# Visualization
|
454 |
with tabs[4]:
|
455 |
st.header("Visualization & Tools")
|
456 |
+
col1, col2 = st.columns(2)
|
457 |
+
|
458 |
+
with col1:
|
459 |
+
st.markdown("""
|
460 |
+
#### Business Intelligence
|
461 |
+
- **Tools**:
|
462 |
+
• Tableau
|
463 |
+
• Power BI
|
464 |
+
• Dashboard Design
|
465 |
+
|
466 |
+
#### Technical
|
467 |
+
- **Libraries**:
|
468 |
+
• Plotly
|
469 |
+
• Seaborn
|
470 |
+
• Matplotlib
|
471 |
+
""")
|
472 |
|
473 |
+
with col2:
|
474 |
+
st.markdown("""
|
475 |
+
#### Deployment
|
476 |
+
- **Platforms**:
|
477 |
+
• Streamlit
|
478 |
+
• Flask
|
479 |
+
• Web Development
|
480 |
+
|
481 |
+
#### Collaboration
|
482 |
+
- **Tools**:
|
483 |
+
• JIRA
|
484 |
+
• Notion
|
485 |
+
• Git Workflow
|
486 |
+
""")
|
487 |
|
488 |
# Specialized Systems
|
489 |
with tabs[5]:
|
490 |
st.header("Specialized Systems")
|
491 |
+
col1, col2 = st.columns(2)
|
492 |
+
|
493 |
+
with col1:
|
494 |
+
st.markdown("""
|
495 |
+
#### Recommender Systems
|
496 |
+
- **Techniques**:
|
497 |
+
• Hybrid Filtering
|
498 |
+
• Content-Based
|
499 |
+
• Collaborative
|
500 |
+
|
501 |
+
#### Ensemble Methods
|
502 |
+
- **Approaches**:
|
503 |
+
• Multi-model Consensus
|
504 |
+
• Classifier Combinations
|
505 |
+
• Voting Systems
|
506 |
+
""")
|
507 |
|
508 |
+
with col2:
|
509 |
+
st.markdown("""
|
510 |
+
#### Optimization
|
511 |
+
- **Performance**:
|
512 |
+
• CUDA Acceleration
|
513 |
+
• Parallel Processing
|
514 |
+
• Resource Management
|
515 |
+
|
516 |
+
#### Custom Solutions
|
517 |
+
- **Specialized**:
|
518 |
+
• NLP Systems
|
519 |
+
• Computer Vision
|
520 |
+
• Time Series
|
521 |
+
""")
|
|
|
|
|
|
|
|
|
522 |
def display_apps():
|
523 |
st.markdown('## Apps')
|
524 |
st.markdown("""
|