Niharmahesh commited on
Commit
f5f6805
·
verified ·
1 Parent(s): b101361

Upload 109 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Animation - 1719728959093.json +0 -0
  2. README.md +1 -13
  3. __pycache__/code.cpython-310.pyc +0 -0
  4. app.py +63 -0
  5. f.ipynb +788 -0
  6. gitflow.png +0 -0
  7. modelllls/mnist_model_lr0.00010699_bs16_epochs10.json +1 -0
  8. modelllls/mnist_model_lr0.00010699_bs16_epochs30.json +1 -0
  9. modelllls/mnist_model_lr0.00010699_bs256_epochs15.json +1 -0
  10. modelllls/mnist_model_lr0.00010699_bs256_epochs35.json +1 -0
  11. modelllls/mnist_model_lr0.00010699_bs512_epochs45.json +1 -0
  12. modelllls/mnist_model_lr0.00012839_bs16_epochs50.json +1 -0
  13. modelllls/mnist_model_lr0.00012839_bs32_epochs20.json +1 -0
  14. modelllls/mnist_model_lr0.00012839_bs64_epochs25.json +1 -0
  15. modelllls/mnist_model_lr0.00015407_bs16_epochs10.json +1 -0
  16. modelllls/mnist_model_lr0.00015407_bs16_epochs30.json +1 -0
  17. modelllls/mnist_model_lr0.00015407_bs512_epochs50.json +1 -0
  18. modelllls/mnist_model_lr0.00015407_bs8_epochs45.json +1 -0
  19. modelllls/mnist_model_lr0.00018488_bs128_epochs20.json +1 -0
  20. modelllls/mnist_model_lr0.00018488_bs16_epochs20.json +1 -0
  21. modelllls/mnist_model_lr0.00018488_bs32_epochs50.json +1 -0
  22. modelllls/mnist_model_lr0.00018488_bs512_epochs25.json +1 -0
  23. modelllls/mnist_model_lr0.00018488_bs8_epochs15.json +1 -0
  24. modelllls/mnist_model_lr0.00018488_bs8_epochs35.json +1 -0
  25. modelllls/mnist_model_lr0.00022186_bs16_epochs40.json +1 -0
  26. modelllls/mnist_model_lr0.00022186_bs256_epochs20.json +1 -0
  27. modelllls/mnist_model_lr0.00022186_bs32_epochs10.json +1 -0
  28. modelllls/mnist_model_lr0.00022186_bs512_epochs50.json +1 -0
  29. modelllls/mnist_model_lr0.00022186_bs64_epochs15.json +1 -0
  30. modelllls/mnist_model_lr0.00022186_bs64_epochs35.json +1 -0
  31. modelllls/mnist_model_lr0.00026623_bs256_epochs35.json +1 -0
  32. modelllls/mnist_model_lr0.00026623_bs64_epochs20.json +1 -0
  33. modelllls/mnist_model_lr0.00031948_bs16_epochs20.json +1 -0
  34. modelllls/mnist_model_lr0.00031948_bs256_epochs20.json +1 -0
  35. modelllls/mnist_model_lr0.00031948_bs32_epochs50.json +1 -0
  36. modelllls/mnist_model_lr0.00031948_bs512_epochs50.json +1 -0
  37. modelllls/mnist_model_lr0.00031948_bs8_epochs25.json +1 -0
  38. modelllls/mnist_model_lr1.2e-05_bs128_epochs15.json +1 -0
  39. modelllls/mnist_model_lr1.2e-05_bs128_epochs35.json +1 -0
  40. modelllls/mnist_model_lr1.2e-05_bs16_epochs45.json +1 -0
  41. modelllls/mnist_model_lr1.2e-05_bs256_epochs40.json +1 -0
  42. modelllls/mnist_model_lr1.2e-05_bs32_epochs15.json +1 -0
  43. modelllls/mnist_model_lr1.2e-05_bs512_epochs10.json +1 -0
  44. modelllls/mnist_model_lr1.2e-05_bs512_epochs30.json +1 -0
  45. modelllls/mnist_model_lr1.2e-05_bs64_epochs10.json +1 -0
  46. modelllls/mnist_model_lr1.2e-05_bs8_epochs45.json +1 -0
  47. modelllls/mnist_model_lr1.44e-05_bs128_epochs35.json +1 -0
  48. modelllls/mnist_model_lr1.44e-05_bs256_epochs40.json +1 -0
  49. modelllls/mnist_model_lr1.44e-05_bs32_epochs15.json +1 -0
  50. modelllls/mnist_model_lr1.44e-05_bs32_epochs35.json +1 -0
Animation - 1719728959093.json ADDED
The diff for this file is too large to render. See raw diff
 
README.md CHANGED
@@ -1,13 +1 @@
1
- ---
2
- title: TraiNNe
3
- emoji: 🐢
4
- colorFrom: gray
5
- colorTo: purple
6
- sdk: streamlit
7
- sdk_version: 1.40.1
8
- app_file: app.py
9
- pinned: false
10
- short_description: understanding hyper parameter tuning in NN
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ # NNbasics
 
 
 
 
 
 
 
 
 
 
 
 
__pycache__/code.cpython-310.pyc ADDED
Binary file (2.41 kB). View file
 
app.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import streamlit as st
3
+ import tensorflow as tf
4
+ from tensorflow.keras.datasets import mnist
5
+ from tensorflow.keras.models import Sequential
6
+ from tensorflow.keras.layers import Dense, Flatten
7
+ from tensorflow.keras.optimizers import Adam
8
+ import matplotlib.pyplot as plt
9
+
10
+ # Load MNIST data
11
+ (x_train, y_train), (x_test, y_test) = mnist.load_data()
12
+ x_train, x_test = x_train / 255.0, x_test / 255.0
13
+
14
+ # Streamlit app
15
+ st.title("MNIST Neural Network Training")
16
+
17
+ # Sidebar for parameter selection
18
+ st.sidebar.header("Model Parameters")
19
+ learning_rate = st.sidebar.slider("Learning Rate", 0.0001, 0.01, 0.001)
20
+ batch_size = st.sidebar.slider("Batch Size", 16, 128, 32)
21
+ epochs = st.sidebar.slider("Epochs", 1, 20, 5)
22
+
23
+ # Model building function
24
+ def build_model(learning_rate):
25
+ model = Sequential([
26
+ Flatten(input_shape=(28, 28)),
27
+ Dense(128, activation='relu'),
28
+ Dense(10, activation='softmax')
29
+ ])
30
+ model.compile(optimizer=Adam(learning_rate=learning_rate),
31
+ loss='sparse_categorical_crossentropy',
32
+ metrics=['accuracy'])
33
+ return model
34
+
35
+ # Train the model
36
+ if st.sidebar.button("Train Model"):
37
+ model = build_model(learning_rate)
38
+ history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, y_test))
39
+
40
+ # Plot training & validation accuracy values
41
+ fig, ax = plt.subplots()
42
+ ax.plot(history.history['accuracy'])
43
+ ax.plot(history.history['val_accuracy'])
44
+ ax.set_title('Model accuracy')
45
+ ax.set_ylabel('Accuracy')
46
+ ax.set_xlabel('Epoch')
47
+ ax.legend(['Train', 'Test'], loc='upper left')
48
+ st.pyplot(fig)
49
+
50
+ # Plot training & validation loss values
51
+ fig, ax = plt.subplots()
52
+ ax.plot(history.history['loss'])
53
+ ax.plot(history.history['val_loss'])
54
+ ax.set_title('Model loss')
55
+ ax.set_ylabel('Loss')
56
+ ax.set_xlabel('Epoch')
57
+ ax.legend(['Train', 'Test'], loc='upper left')
58
+ st.pyplot(fig)
59
+
60
+ # Evaluate the model
61
+ loss, accuracy = model.evaluate(x_test, y_test, verbose=2)
62
+ st.write(f"Test Accuracy: {accuracy:.4f}")
63
+ st.write(f"Test Loss: {loss:.4f}")
f.ipynb ADDED
@@ -0,0 +1,788 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 3,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stdout",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "Record 1:\n",
13
+ "Image:\n",
14
+ "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
15
+ " 0 0 0 0 0 0 0 0 0 0]\n",
16
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
17
+ " 0 0 0 0 0 0 0 0 0 0]\n",
18
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
19
+ " 0 0 0 0 0 0 0 0 0 0]\n",
20
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
21
+ " 0 0 0 0 0 0 0 0 0 0]\n",
22
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
23
+ " 0 0 0 0 0 0 0 0 0 0]\n",
24
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 3 18 18 18 126 136\n",
25
+ " 175 26 166 255 247 127 0 0 0 0]\n",
26
+ " [ 0 0 0 0 0 0 0 0 30 36 94 154 170 253 253 253 253 253\n",
27
+ " 225 172 253 242 195 64 0 0 0 0]\n",
28
+ " [ 0 0 0 0 0 0 0 49 238 253 253 253 253 253 253 253 253 251\n",
29
+ " 93 82 82 56 39 0 0 0 0 0]\n",
30
+ " [ 0 0 0 0 0 0 0 18 219 253 253 253 253 253 198 182 247 241\n",
31
+ " 0 0 0 0 0 0 0 0 0 0]\n",
32
+ " [ 0 0 0 0 0 0 0 0 80 156 107 253 253 205 11 0 43 154\n",
33
+ " 0 0 0 0 0 0 0 0 0 0]\n",
34
+ " [ 0 0 0 0 0 0 0 0 0 14 1 154 253 90 0 0 0 0\n",
35
+ " 0 0 0 0 0 0 0 0 0 0]\n",
36
+ " [ 0 0 0 0 0 0 0 0 0 0 0 139 253 190 2 0 0 0\n",
37
+ " 0 0 0 0 0 0 0 0 0 0]\n",
38
+ " [ 0 0 0 0 0 0 0 0 0 0 0 11 190 253 70 0 0 0\n",
39
+ " 0 0 0 0 0 0 0 0 0 0]\n",
40
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 35 241 225 160 108 1\n",
41
+ " 0 0 0 0 0 0 0 0 0 0]\n",
42
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 81 240 253 253 119\n",
43
+ " 25 0 0 0 0 0 0 0 0 0]\n",
44
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 186 253 253\n",
45
+ " 150 27 0 0 0 0 0 0 0 0]\n",
46
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 93 252\n",
47
+ " 253 187 0 0 0 0 0 0 0 0]\n",
48
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 249\n",
49
+ " 253 249 64 0 0 0 0 0 0 0]\n",
50
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 130 183 253\n",
51
+ " 253 207 2 0 0 0 0 0 0 0]\n",
52
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 39 148 229 253 253 253\n",
53
+ " 250 182 0 0 0 0 0 0 0 0]\n",
54
+ " [ 0 0 0 0 0 0 0 0 0 0 24 114 221 253 253 253 253 201\n",
55
+ " 78 0 0 0 0 0 0 0 0 0]\n",
56
+ " [ 0 0 0 0 0 0 0 0 23 66 213 253 253 253 253 198 81 2\n",
57
+ " 0 0 0 0 0 0 0 0 0 0]\n",
58
+ " [ 0 0 0 0 0 0 18 171 219 253 253 253 253 195 80 9 0 0\n",
59
+ " 0 0 0 0 0 0 0 0 0 0]\n",
60
+ " [ 0 0 0 0 55 172 226 253 253 253 253 244 133 11 0 0 0 0\n",
61
+ " 0 0 0 0 0 0 0 0 0 0]\n",
62
+ " [ 0 0 0 0 136 253 253 253 212 135 132 16 0 0 0 0 0 0\n",
63
+ " 0 0 0 0 0 0 0 0 0 0]\n",
64
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
65
+ " 0 0 0 0 0 0 0 0 0 0]\n",
66
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
67
+ " 0 0 0 0 0 0 0 0 0 0]\n",
68
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
69
+ " 0 0 0 0 0 0 0 0 0 0]]\n",
70
+ "Label: 5\n",
71
+ "\n",
72
+ "\n",
73
+ "Record 2:\n",
74
+ "Image:\n",
75
+ "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
76
+ " 0 0 0 0 0 0 0 0 0 0]\n",
77
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
78
+ " 0 0 0 0 0 0 0 0 0 0]\n",
79
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
80
+ " 0 0 0 0 0 0 0 0 0 0]\n",
81
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
82
+ " 0 0 0 0 0 0 0 0 0 0]\n",
83
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 159 253\n",
84
+ " 159 50 0 0 0 0 0 0 0 0]\n",
85
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 238 252 252\n",
86
+ " 252 237 0 0 0 0 0 0 0 0]\n",
87
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 54 227 253 252 239\n",
88
+ " 233 252 57 6 0 0 0 0 0 0]\n",
89
+ " [ 0 0 0 0 0 0 0 0 0 0 0 10 60 224 252 253 252 202\n",
90
+ " 84 252 253 122 0 0 0 0 0 0]\n",
91
+ " [ 0 0 0 0 0 0 0 0 0 0 0 163 252 252 252 253 252 252\n",
92
+ " 96 189 253 167 0 0 0 0 0 0]\n",
93
+ " [ 0 0 0 0 0 0 0 0 0 0 51 238 253 253 190 114 253 228\n",
94
+ " 47 79 255 168 0 0 0 0 0 0]\n",
95
+ " [ 0 0 0 0 0 0 0 0 0 48 238 252 252 179 12 75 121 21\n",
96
+ " 0 0 253 243 50 0 0 0 0 0]\n",
97
+ " [ 0 0 0 0 0 0 0 0 38 165 253 233 208 84 0 0 0 0\n",
98
+ " 0 0 253 252 165 0 0 0 0 0]\n",
99
+ " [ 0 0 0 0 0 0 0 7 178 252 240 71 19 28 0 0 0 0\n",
100
+ " 0 0 253 252 195 0 0 0 0 0]\n",
101
+ " [ 0 0 0 0 0 0 0 57 252 252 63 0 0 0 0 0 0 0\n",
102
+ " 0 0 253 252 195 0 0 0 0 0]\n",
103
+ " [ 0 0 0 0 0 0 0 198 253 190 0 0 0 0 0 0 0 0\n",
104
+ " 0 0 255 253 196 0 0 0 0 0]\n",
105
+ " [ 0 0 0 0 0 0 76 246 252 112 0 0 0 0 0 0 0 0\n",
106
+ " 0 0 253 252 148 0 0 0 0 0]\n",
107
+ " [ 0 0 0 0 0 0 85 252 230 25 0 0 0 0 0 0 0 0\n",
108
+ " 7 135 253 186 12 0 0 0 0 0]\n",
109
+ " [ 0 0 0 0 0 0 85 252 223 0 0 0 0 0 0 0 0 7\n",
110
+ " 131 252 225 71 0 0 0 0 0 0]\n",
111
+ " [ 0 0 0 0 0 0 85 252 145 0 0 0 0 0 0 0 48 165\n",
112
+ " 252 173 0 0 0 0 0 0 0 0]\n",
113
+ " [ 0 0 0 0 0 0 86 253 225 0 0 0 0 0 0 114 238 253\n",
114
+ " 162 0 0 0 0 0 0 0 0 0]\n",
115
+ " [ 0 0 0 0 0 0 85 252 249 146 48 29 85 178 225 253 223 167\n",
116
+ " 56 0 0 0 0 0 0 0 0 0]\n",
117
+ " [ 0 0 0 0 0 0 85 252 252 252 229 215 252 252 252 196 130 0\n",
118
+ " 0 0 0 0 0 0 0 0 0 0]\n",
119
+ " [ 0 0 0 0 0 0 28 199 252 252 253 252 252 233 145 0 0 0\n",
120
+ " 0 0 0 0 0 0 0 0 0 0]\n",
121
+ " [ 0 0 0 0 0 0 0 25 128 252 253 252 141 37 0 0 0 0\n",
122
+ " 0 0 0 0 0 0 0 0 0 0]\n",
123
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
124
+ " 0 0 0 0 0 0 0 0 0 0]\n",
125
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
126
+ " 0 0 0 0 0 0 0 0 0 0]\n",
127
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
128
+ " 0 0 0 0 0 0 0 0 0 0]\n",
129
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
130
+ " 0 0 0 0 0 0 0 0 0 0]]\n",
131
+ "Label: 0\n",
132
+ "\n",
133
+ "\n",
134
+ "Record 3:\n",
135
+ "Image:\n",
136
+ "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
137
+ " 0 0 0 0 0 0 0 0 0 0]\n",
138
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
139
+ " 0 0 0 0 0 0 0 0 0 0]\n",
140
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
141
+ " 0 0 0 0 0 0 0 0 0 0]\n",
142
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
143
+ " 0 0 0 0 0 0 0 0 0 0]\n",
144
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
145
+ " 0 0 0 0 0 0 0 0 0 0]\n",
146
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
147
+ " 0 0 67 232 39 0 0 0 0 0]\n",
148
+ " [ 0 0 0 0 62 81 0 0 0 0 0 0 0 0 0 0 0 0\n",
149
+ " 0 0 120 180 39 0 0 0 0 0]\n",
150
+ " [ 0 0 0 0 126 163 0 0 0 0 0 0 0 0 0 0 0 0\n",
151
+ " 0 2 153 210 40 0 0 0 0 0]\n",
152
+ " [ 0 0 0 0 220 163 0 0 0 0 0 0 0 0 0 0 0 0\n",
153
+ " 0 27 254 162 0 0 0 0 0 0]\n",
154
+ " [ 0 0 0 0 222 163 0 0 0 0 0 0 0 0 0 0 0 0\n",
155
+ " 0 183 254 125 0 0 0 0 0 0]\n",
156
+ " [ 0 0 0 46 245 163 0 0 0 0 0 0 0 0 0 0 0 0\n",
157
+ " 0 198 254 56 0 0 0 0 0 0]\n",
158
+ " [ 0 0 0 120 254 163 0 0 0 0 0 0 0 0 0 0 0 0\n",
159
+ " 23 231 254 29 0 0 0 0 0 0]\n",
160
+ " [ 0 0 0 159 254 120 0 0 0 0 0 0 0 0 0 0 0 0\n",
161
+ " 163 254 216 16 0 0 0 0 0 0]\n",
162
+ " [ 0 0 0 159 254 67 0 0 0 0 0 0 0 0 0 14 86 178\n",
163
+ " 248 254 91 0 0 0 0 0 0 0]\n",
164
+ " [ 0 0 0 159 254 85 0 0 0 47 49 116 144 150 241 243 234 179\n",
165
+ " 241 252 40 0 0 0 0 0 0 0]\n",
166
+ " [ 0 0 0 150 253 237 207 207 207 253 254 250 240 198 143 91 28 5\n",
167
+ " 233 250 0 0 0 0 0 0 0 0]\n",
168
+ " [ 0 0 0 0 119 177 177 177 177 177 98 56 0 0 0 0 0 102\n",
169
+ " 254 220 0 0 0 0 0 0 0 0]\n",
170
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 169\n",
171
+ " 254 137 0 0 0 0 0 0 0 0]\n",
172
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 169\n",
173
+ " 254 57 0 0 0 0 0 0 0 0]\n",
174
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 169\n",
175
+ " 254 57 0 0 0 0 0 0 0 0]\n",
176
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 169\n",
177
+ " 255 94 0 0 0 0 0 0 0 0]\n",
178
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 169\n",
179
+ " 254 96 0 0 0 0 0 0 0 0]\n",
180
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 169\n",
181
+ " 254 153 0 0 0 0 0 0 0 0]\n",
182
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 169\n",
183
+ " 255 153 0 0 0 0 0 0 0 0]\n",
184
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96\n",
185
+ " 254 153 0 0 0 0 0 0 0 0]\n",
186
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
187
+ " 0 0 0 0 0 0 0 0 0 0]\n",
188
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
189
+ " 0 0 0 0 0 0 0 0 0 0]\n",
190
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
191
+ " 0 0 0 0 0 0 0 0 0 0]]\n",
192
+ "Label: 4\n",
193
+ "\n",
194
+ "\n",
195
+ "Record 4:\n",
196
+ "Image:\n",
197
+ "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
198
+ " 0 0 0 0 0 0 0 0 0 0]\n",
199
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
200
+ " 0 0 0 0 0 0 0 0 0 0]\n",
201
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
202
+ " 0 0 0 0 0 0 0 0 0 0]\n",
203
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
204
+ " 0 0 0 0 0 0 0 0 0 0]\n",
205
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
206
+ " 0 0 0 0 0 0 0 0 0 0]\n",
207
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
208
+ " 124 253 255 63 0 0 0 0 0 0]\n",
209
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96\n",
210
+ " 244 251 253 62 0 0 0 0 0 0]\n",
211
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127\n",
212
+ " 251 251 253 62 0 0 0 0 0 0]\n",
213
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68 236\n",
214
+ " 251 211 31 8 0 0 0 0 0 0]\n",
215
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 228 251\n",
216
+ " 251 94 0 0 0 0 0 0 0 0]\n",
217
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 155 253 253\n",
218
+ " 189 0 0 0 0 0 0 0 0 0]\n",
219
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 253 251 235\n",
220
+ " 66 0 0 0 0 0 0 0 0 0]\n",
221
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 32 205 253 251 126\n",
222
+ " 0 0 0 0 0 0 0 0 0 0]\n",
223
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 104 251 253 184 15\n",
224
+ " 0 0 0 0 0 0 0 0 0 0]\n",
225
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 80 240 251 193 23 0\n",
226
+ " 0 0 0 0 0 0 0 0 0 0]\n",
227
+ " [ 0 0 0 0 0 0 0 0 0 0 0 32 253 253 253 159 0 0\n",
228
+ " 0 0 0 0 0 0 0 0 0 0]\n",
229
+ " [ 0 0 0 0 0 0 0 0 0 0 0 151 251 251 251 39 0 0\n",
230
+ " 0 0 0 0 0 0 0 0 0 0]\n",
231
+ " [ 0 0 0 0 0 0 0 0 0 0 48 221 251 251 172 0 0 0\n",
232
+ " 0 0 0 0 0 0 0 0 0 0]\n",
233
+ " [ 0 0 0 0 0 0 0 0 0 0 234 251 251 196 12 0 0 0\n",
234
+ " 0 0 0 0 0 0 0 0 0 0]\n",
235
+ " [ 0 0 0 0 0 0 0 0 0 0 253 251 251 89 0 0 0 0\n",
236
+ " 0 0 0 0 0 0 0 0 0 0]\n",
237
+ " [ 0 0 0 0 0 0 0 0 0 159 255 253 253 31 0 0 0 0\n",
238
+ " 0 0 0 0 0 0 0 0 0 0]\n",
239
+ " [ 0 0 0 0 0 0 0 0 48 228 253 247 140 8 0 0 0 0\n",
240
+ " 0 0 0 0 0 0 0 0 0 0]\n",
241
+ " [ 0 0 0 0 0 0 0 0 64 251 253 220 0 0 0 0 0 0\n",
242
+ " 0 0 0 0 0 0 0 0 0 0]\n",
243
+ " [ 0 0 0 0 0 0 0 0 64 251 253 220 0 0 0 0 0 0\n",
244
+ " 0 0 0 0 0 0 0 0 0 0]\n",
245
+ " [ 0 0 0 0 0 0 0 0 24 193 253 220 0 0 0 0 0 0\n",
246
+ " 0 0 0 0 0 0 0 0 0 0]\n",
247
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
248
+ " 0 0 0 0 0 0 0 0 0 0]\n",
249
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
250
+ " 0 0 0 0 0 0 0 0 0 0]\n",
251
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
252
+ " 0 0 0 0 0 0 0 0 0 0]]\n",
253
+ "Label: 1\n",
254
+ "\n",
255
+ "\n",
256
+ "Record 5:\n",
257
+ "Image:\n",
258
+ "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
259
+ " 0 0 0 0 0 0 0 0 0 0]\n",
260
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
261
+ " 0 0 0 0 0 0 0 0 0 0]\n",
262
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
263
+ " 0 0 0 0 0 0 0 0 0 0]\n",
264
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
265
+ " 0 0 0 0 0 0 0 0 0 0]\n",
266
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
267
+ " 0 0 0 0 0 0 0 0 0 0]\n",
268
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
269
+ " 0 0 0 0 0 0 0 0 0 0]\n",
270
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
271
+ " 0 0 0 0 0 0 0 0 0 0]\n",
272
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 55 148 210 253 253 113\n",
273
+ " 87 148 55 0 0 0 0 0 0 0]\n",
274
+ " [ 0 0 0 0 0 0 0 0 0 0 0 87 232 252 253 189 210 252\n",
275
+ " 252 253 168 0 0 0 0 0 0 0]\n",
276
+ " [ 0 0 0 0 0 0 0 0 0 4 57 242 252 190 65 5 12 182\n",
277
+ " 252 253 116 0 0 0 0 0 0 0]\n",
278
+ " [ 0 0 0 0 0 0 0 0 0 96 252 252 183 14 0 0 92 252\n",
279
+ " 252 225 21 0 0 0 0 0 0 0]\n",
280
+ " [ 0 0 0 0 0 0 0 0 132 253 252 146 14 0 0 0 215 252\n",
281
+ " 252 79 0 0 0 0 0 0 0 0]\n",
282
+ " [ 0 0 0 0 0 0 0 126 253 247 176 9 0 0 8 78 245 253\n",
283
+ " 129 0 0 0 0 0 0 0 0 0]\n",
284
+ " [ 0 0 0 0 0 0 16 232 252 176 0 0 0 36 201 252 252 169\n",
285
+ " 11 0 0 0 0 0 0 0 0 0]\n",
286
+ " [ 0 0 0 0 0 0 22 252 252 30 22 119 197 241 253 252 251 77\n",
287
+ " 0 0 0 0 0 0 0 0 0 0]\n",
288
+ " [ 0 0 0 0 0 0 16 231 252 253 252 252 252 226 227 252 231 0\n",
289
+ " 0 0 0 0 0 0 0 0 0 0]\n",
290
+ " [ 0 0 0 0 0 0 0 55 235 253 217 138 42 24 192 252 143 0\n",
291
+ " 0 0 0 0 0 0 0 0 0 0]\n",
292
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 62 255 253 109 0\n",
293
+ " 0 0 0 0 0 0 0 0 0 0]\n",
294
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 71 253 252 21 0\n",
295
+ " 0 0 0 0 0 0 0 0 0 0]\n",
296
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 253 252 21 0\n",
297
+ " 0 0 0 0 0 0 0 0 0 0]\n",
298
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 71 253 252 21 0\n",
299
+ " 0 0 0 0 0 0 0 0 0 0]\n",
300
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 106 253 252 21 0\n",
301
+ " 0 0 0 0 0 0 0 0 0 0]\n",
302
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 45 255 253 21 0\n",
303
+ " 0 0 0 0 0 0 0 0 0 0]\n",
304
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 218 252 56 0\n",
305
+ " 0 0 0 0 0 0 0 0 0 0]\n",
306
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96 252 189 42\n",
307
+ " 0 0 0 0 0 0 0 0 0 0]\n",
308
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 184 252 170\n",
309
+ " 11 0 0 0 0 0 0 0 0 0]\n",
310
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 147 252\n",
311
+ " 42 0 0 0 0 0 0 0 0 0]\n",
312
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
313
+ " 0 0 0 0 0 0 0 0 0 0]]\n",
314
+ "Label: 9\n",
315
+ "\n",
316
+ "\n",
317
+ "Record 6:\n",
318
+ "Image:\n",
319
+ "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
320
+ " 0 0 0 0 0 0 0 0 0 0]\n",
321
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
322
+ " 0 0 0 0 0 0 0 0 0 0]\n",
323
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
324
+ " 0 0 0 0 0 0 0 0 0 0]\n",
325
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
326
+ " 0 0 0 0 0 0 0 0 0 0]\n",
327
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
328
+ " 0 0 0 0 0 0 0 0 0 0]\n",
329
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 25 100\n",
330
+ " 122 7 0 0 0 0 0 0 0 0]\n",
331
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 33 151 208 252 252\n",
332
+ " 252 146 0 0 0 0 0 0 0 0]\n",
333
+ " [ 0 0 0 0 0 0 0 0 0 0 0 40 152 244 252 253 224 211\n",
334
+ " 252 232 40 0 0 0 0 0 0 0]\n",
335
+ " [ 0 0 0 0 0 0 0 0 0 15 152 239 252 252 252 216 31 37\n",
336
+ " 252 252 60 0 0 0 0 0 0 0]\n",
337
+ " [ 0 0 0 0 0 0 0 0 0 96 252 252 252 252 217 29 0 37\n",
338
+ " 252 252 60 0 0 0 0 0 0 0]\n",
339
+ " [ 0 0 0 0 0 0 0 0 0 181 252 252 220 167 30 0 0 77\n",
340
+ " 252 252 60 0 0 0 0 0 0 0]\n",
341
+ " [ 0 0 0 0 0 0 0 0 0 26 128 58 22 0 0 0 0 100\n",
342
+ " 252 252 60 0 0 0 0 0 0 0]\n",
343
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 157\n",
344
+ " 252 252 60 0 0 0 0 0 0 0]\n",
345
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 110 121 122 121 202\n",
346
+ " 252 194 3 0 0 0 0 0 0 0]\n",
347
+ " [ 0 0 0 0 0 0 0 0 0 0 10 53 179 253 253 255 253 253\n",
348
+ " 228 35 0 0 0 0 0 0 0 0]\n",
349
+ " [ 0 0 0 0 0 0 0 0 5 54 227 252 243 228 170 242 252 252\n",
350
+ " 231 117 6 0 0 0 0 0 0 0]\n",
351
+ " [ 0 0 0 0 0 0 0 6 78 252 252 125 59 0 18 208 252 252\n",
352
+ " 252 252 87 7 0 0 0 0 0 0]\n",
353
+ " [ 0 0 0 0 0 0 5 135 252 252 180 16 0 21 203 253 247 129\n",
354
+ " 173 252 252 184 66 49 49 0 0 0]\n",
355
+ " [ 0 0 0 0 0 3 136 252 241 106 17 0 53 200 252 216 65 0\n",
356
+ " 14 72 163 241 252 252 223 0 0 0]\n",
357
+ " [ 0 0 0 0 0 105 252 242 88 18 73 170 244 252 126 29 0 0\n",
358
+ " 0 0 0 89 180 180 37 0 0 0]\n",
359
+ " [ 0 0 0 0 0 231 252 245 205 216 252 252 252 124 3 0 0 0\n",
360
+ " 0 0 0 0 0 0 0 0 0 0]\n",
361
+ " [ 0 0 0 0 0 207 252 252 252 252 178 116 36 4 0 0 0 0\n",
362
+ " 0 0 0 0 0 0 0 0 0 0]\n",
363
+ " [ 0 0 0 0 0 13 93 143 121 23 6 0 0 0 0 0 0 0\n",
364
+ " 0 0 0 0 0 0 0 0 0 0]\n",
365
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
366
+ " 0 0 0 0 0 0 0 0 0 0]\n",
367
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
368
+ " 0 0 0 0 0 0 0 0 0 0]\n",
369
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
370
+ " 0 0 0 0 0 0 0 0 0 0]\n",
371
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
372
+ " 0 0 0 0 0 0 0 0 0 0]\n",
373
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
374
+ " 0 0 0 0 0 0 0 0 0 0]]\n",
375
+ "Label: 2\n",
376
+ "\n",
377
+ "\n",
378
+ "Record 7:\n",
379
+ "Image:\n",
380
+ "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
381
+ " 0 0 0 0 0 0 0 0 0 0]\n",
382
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
383
+ " 0 0 0 0 0 0 0 0 0 0]\n",
384
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
385
+ " 0 0 0 0 0 0 0 0 0 0]\n",
386
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
387
+ " 0 0 0 0 0 0 0 0 0 0]\n",
388
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 145 255 211 31 0 0\n",
389
+ " 0 0 0 0 0 0 0 0 0 0]\n",
390
+ " [ 0 0 0 0 0 0 0 0 0 0 0 32 237 253 252 71 0 0\n",
391
+ " 0 0 0 0 0 0 0 0 0 0]\n",
392
+ " [ 0 0 0 0 0 0 0 0 0 0 0 11 175 253 252 71 0 0\n",
393
+ " 0 0 0 0 0 0 0 0 0 0]\n",
394
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 144 253 252 71 0 0\n",
395
+ " 0 0 0 0 0 0 0 0 0 0]\n",
396
+ " [ 0 0 0 0 0 0 0 0 0 0 0 16 191 253 252 71 0 0\n",
397
+ " 0 0 0 0 0 0 0 0 0 0]\n",
398
+ " [ 0 0 0 0 0 0 0 0 0 0 0 26 221 253 252 124 31 0\n",
399
+ " 0 0 0 0 0 0 0 0 0 0]\n",
400
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 125 253 252 252 108 0\n",
401
+ " 0 0 0 0 0 0 0 0 0 0]\n",
402
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 253 252 252 108 0\n",
403
+ " 0 0 0 0 0 0 0 0 0 0]\n",
404
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 255 253 253 108 0\n",
405
+ " 0 0 0 0 0 0 0 0 0 0]\n",
406
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 253 252 252 108 0\n",
407
+ " 0 0 0 0 0 0 0 0 0 0]\n",
408
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 253 252 252 108 0\n",
409
+ " 0 0 0 0 0 0 0 0 0 0]\n",
410
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 253 252 252 108 0\n",
411
+ " 0 0 0 0 0 0 0 0 0 0]\n",
412
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 255 253 253 170 0\n",
413
+ " 0 0 0 0 0 0 0 0 0 0]\n",
414
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 253 252 252 252 42\n",
415
+ " 0 0 0 0 0 0 0 0 0 0]\n",
416
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 149 252 252 252 144\n",
417
+ " 0 0 0 0 0 0 0 0 0 0]\n",
418
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 109 252 252 252 144\n",
419
+ " 0 0 0 0 0 0 0 0 0 0]\n",
420
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 218 253 253 255\n",
421
+ " 35 0 0 0 0 0 0 0 0 0]\n",
422
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 175 252 252 253\n",
423
+ " 35 0 0 0 0 0 0 0 0 0]\n",
424
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 73 252 252 253\n",
425
+ " 35 0 0 0 0 0 0 0 0 0]\n",
426
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 211 252 253\n",
427
+ " 35 0 0 0 0 0 0 0 0 0]\n",
428
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
429
+ " 0 0 0 0 0 0 0 0 0 0]\n",
430
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
431
+ " 0 0 0 0 0 0 0 0 0 0]\n",
432
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
433
+ " 0 0 0 0 0 0 0 0 0 0]\n",
434
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
435
+ " 0 0 0 0 0 0 0 0 0 0]]\n",
436
+ "Label: 1\n",
437
+ "\n",
438
+ "\n",
439
+ "Record 8:\n",
440
+ "Image:\n",
441
+ "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
442
+ " 0 0 0 0 0 0 0 0 0 0]\n",
443
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
444
+ " 0 0 0 0 0 0 0 0 0 0]\n",
445
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
446
+ " 0 0 0 0 0 0 0 0 0 0]\n",
447
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
448
+ " 0 0 0 0 0 0 0 0 0 0]\n",
449
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
450
+ " 0 0 0 0 0 0 0 0 0 0]\n",
451
+ " [ 0 0 0 0 0 0 0 0 0 0 0 38 43 105 255 253 253 253\n",
452
+ " 253 253 174 6 0 0 0 0 0 0]\n",
453
+ " [ 0 0 0 0 0 0 0 0 0 43 139 224 226 252 253 252 252 252\n",
454
+ " 252 252 252 158 14 0 0 0 0 0]\n",
455
+ " [ 0 0 0 0 0 0 0 0 0 178 252 252 252 252 253 252 252 252\n",
456
+ " 252 252 252 252 59 0 0 0 0 0]\n",
457
+ " [ 0 0 0 0 0 0 0 0 0 109 252 252 230 132 133 132 132 189\n",
458
+ " 252 252 252 252 59 0 0 0 0 0]\n",
459
+ " [ 0 0 0 0 0 0 0 0 0 4 29 29 24 0 0 0 0 14\n",
460
+ " 226 252 252 172 7 0 0 0 0 0]\n",
461
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85\n",
462
+ " 243 252 252 144 0 0 0 0 0 0]\n",
463
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88 189\n",
464
+ " 252 252 252 14 0 0 0 0 0 0]\n",
465
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 212 247 252\n",
466
+ " 252 252 204 9 0 0 0 0 0 0]\n",
467
+ " [ 0 0 0 0 0 0 0 0 0 32 125 193 193 193 253 252 252 252\n",
468
+ " 238 102 28 0 0 0 0 0 0 0]\n",
469
+ " [ 0 0 0 0 0 0 0 0 45 222 252 252 252 252 253 252 252 252\n",
470
+ " 177 0 0 0 0 0 0 0 0 0]\n",
471
+ " [ 0 0 0 0 0 0 0 0 45 223 253 253 253 253 255 253 253 253\n",
472
+ " 253 74 0 0 0 0 0 0 0 0]\n",
473
+ " [ 0 0 0 0 0 0 0 0 0 31 123 52 44 44 44 44 143 252\n",
474
+ " 252 74 0 0 0 0 0 0 0 0]\n",
475
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 252\n",
476
+ " 252 74 0 0 0 0 0 0 0 0]\n",
477
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86 252\n",
478
+ " 252 74 0 0 0 0 0 0 0 0]\n",
479
+ " [ 0 0 0 0 0 0 5 75 9 0 0 0 0 0 0 98 242 252\n",
480
+ " 252 74 0 0 0 0 0 0 0 0]\n",
481
+ " [ 0 0 0 0 0 61 183 252 29 0 0 0 0 18 92 239 252 252\n",
482
+ " 243 65 0 0 0 0 0 0 0 0]\n",
483
+ " [ 0 0 0 0 0 208 252 252 147 134 134 134 134 203 253 252 252 188\n",
484
+ " 83 0 0 0 0 0 0 0 0 0]\n",
485
+ " [ 0 0 0 0 0 208 252 252 252 252 252 252 252 252 253 230 153 8\n",
486
+ " 0 0 0 0 0 0 0 0 0 0]\n",
487
+ " [ 0 0 0 0 0 49 157 252 252 252 252 252 217 207 146 45 0 0\n",
488
+ " 0 0 0 0 0 0 0 0 0 0]\n",
489
+ " [ 0 0 0 0 0 0 7 103 235 252 172 103 24 0 0 0 0 0\n",
490
+ " 0 0 0 0 0 0 0 0 0 0]\n",
491
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
492
+ " 0 0 0 0 0 0 0 0 0 0]\n",
493
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
494
+ " 0 0 0 0 0 0 0 0 0 0]\n",
495
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
496
+ " 0 0 0 0 0 0 0 0 0 0]]\n",
497
+ "Label: 3\n",
498
+ "\n",
499
+ "\n",
500
+ "Record 9:\n",
501
+ "Image:\n",
502
+ "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
503
+ " 0 0 0 0 0 0 0 0 0 0]\n",
504
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
505
+ " 0 0 0 0 0 0 0 0 0 0]\n",
506
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
507
+ " 0 0 0 0 0 0 0 0 0 0]\n",
508
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
509
+ " 0 0 0 0 0 0 0 0 0 0]\n",
510
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
511
+ " 0 0 0 0 0 0 0 0 0 0]\n",
512
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 5 63 197 0 0 0\n",
513
+ " 0 0 0 0 0 0 0 0 0 0]\n",
514
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 20 254 230 24 0 0\n",
515
+ " 0 0 0 0 0 0 0 0 0 0]\n",
516
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 20 254 254 48 0 0\n",
517
+ " 0 0 0 0 0 0 0 0 0 0]\n",
518
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 20 254 255 48 0 0\n",
519
+ " 0 0 0 0 0 0 0 0 0 0]\n",
520
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 20 254 254 57 0 0\n",
521
+ " 0 0 0 0 0 0 0 0 0 0]\n",
522
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 20 254 254 108 0 0\n",
523
+ " 0 0 0 0 0 0 0 0 0 0]\n",
524
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 16 239 254 143 0 0\n",
525
+ " 0 0 0 0 0 0 0 0 0 0]\n",
526
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 178 254 143 0 0\n",
527
+ " 0 0 0 0 0 0 0 0 0 0]\n",
528
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 178 254 143 0 0\n",
529
+ " 0 0 0 0 0 0 0 0 0 0]\n",
530
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 178 254 162 0 0\n",
531
+ " 0 0 0 0 0 0 0 0 0 0]\n",
532
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 178 254 240 0 0\n",
533
+ " 0 0 0 0 0 0 0 0 0 0]\n",
534
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 113 254 240 0 0\n",
535
+ " 0 0 0 0 0 0 0 0 0 0]\n",
536
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 83 254 245 31 0\n",
537
+ " 0 0 0 0 0 0 0 0 0 0]\n",
538
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 79 254 246 38 0\n",
539
+ " 0 0 0 0 0 0 0 0 0 0]\n",
540
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 214 254 150 0\n",
541
+ " 0 0 0 0 0 0 0 0 0 0]\n",
542
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 144 241 8 0\n",
543
+ " 0 0 0 0 0 0 0 0 0 0]\n",
544
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 144 240 2 0\n",
545
+ " 0 0 0 0 0 0 0 0 0 0]\n",
546
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 144 254 82 0\n",
547
+ " 0 0 0 0 0 0 0 0 0 0]\n",
548
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 230 247 40 0\n",
549
+ " 0 0 0 0 0 0 0 0 0 0]\n",
550
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168 209 31 0\n",
551
+ " 0 0 0 0 0 0 0 0 0 0]\n",
552
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
553
+ " 0 0 0 0 0 0 0 0 0 0]\n",
554
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
555
+ " 0 0 0 0 0 0 0 0 0 0]\n",
556
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
557
+ " 0 0 0 0 0 0 0 0 0 0]]\n",
558
+ "Label: 1\n",
559
+ "\n",
560
+ "\n",
561
+ "Record 10:\n",
562
+ "Image:\n",
563
+ "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
564
+ " 0 0 0 0 0 0 0 0 0 0]\n",
565
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
566
+ " 0 0 0 0 0 0 0 0 0 0]\n",
567
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
568
+ " 0 0 0 0 0 0 0 0 0 0]\n",
569
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
570
+ " 0 0 0 0 0 0 0 0 0 0]\n",
571
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
572
+ " 0 0 0 0 189 190 0 0 0 0]\n",
573
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
574
+ " 0 0 0 143 247 153 0 0 0 0]\n",
575
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
576
+ " 0 0 136 247 242 86 0 0 0 0]\n",
577
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
578
+ " 0 0 192 252 187 0 0 0 0 0]\n",
579
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 62 185 18 0 0 0\n",
580
+ " 0 89 236 217 47 0 0 0 0 0]\n",
581
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 216 253 60 0 0 0\n",
582
+ " 0 212 255 81 0 0 0 0 0 0]\n",
583
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 206 252 68 0 0 0\n",
584
+ " 48 242 253 89 0 0 0 0 0 0]\n",
585
+ " [ 0 0 0 0 0 0 0 0 0 0 0 131 251 212 21 0 0 11\n",
586
+ " 167 252 197 5 0 0 0 0 0 0]\n",
587
+ " [ 0 0 0 0 0 0 0 0 0 0 29 232 247 63 0 0 0 153\n",
588
+ " 252 226 0 0 0 0 0 0 0 0]\n",
589
+ " [ 0 0 0 0 0 0 0 0 0 45 219 252 143 0 0 0 116 249\n",
590
+ " 252 103 0 0 0 0 0 0 0 0]\n",
591
+ " [ 0 0 0 0 0 0 0 4 96 253 255 253 200 122 7 25 201 250\n",
592
+ " 158 0 0 0 0 0 0 0 0 0]\n",
593
+ " [ 0 0 0 0 0 0 0 92 252 252 253 217 252 252 200 227 252 231\n",
594
+ " 0 0 0 0 0 0 0 0 0 0]\n",
595
+ " [ 0 0 0 0 0 0 87 251 247 231 65 48 189 252 252 253 252 251\n",
596
+ " 227 35 0 0 0 0 0 0 0 0]\n",
597
+ " [ 0 0 0 0 0 0 190 221 98 0 0 0 42 196 252 253 252 252\n",
598
+ " 162 0 0 0 0 0 0 0 0 0]\n",
599
+ " [ 0 0 0 0 0 0 111 29 0 0 0 0 62 239 252 86 42 42\n",
600
+ " 14 0 0 0 0 0 0 0 0 0]\n",
601
+ " [ 0 0 0 0 0 0 0 0 0 0 0 15 148 253 218 0 0 0\n",
602
+ " 0 0 0 0 0 0 0 0 0 0]\n",
603
+ " [ 0 0 0 0 0 0 0 0 0 0 0 121 252 231 28 0 0 0\n",
604
+ " 0 0 0 0 0 0 0 0 0 0]\n",
605
+ " [ 0 0 0 0 0 0 0 0 0 0 31 221 251 129 0 0 0 0\n",
606
+ " 0 0 0 0 0 0 0 0 0 0]\n",
607
+ " [ 0 0 0 0 0 0 0 0 0 0 218 252 160 0 0 0 0 0\n",
608
+ " 0 0 0 0 0 0 0 0 0 0]\n",
609
+ " [ 0 0 0 0 0 0 0 0 0 0 122 252 82 0 0 0 0 0\n",
610
+ " 0 0 0 0 0 0 0 0 0 0]\n",
611
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
612
+ " 0 0 0 0 0 0 0 0 0 0]\n",
613
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
614
+ " 0 0 0 0 0 0 0 0 0 0]\n",
615
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
616
+ " 0 0 0 0 0 0 0 0 0 0]\n",
617
+ " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
618
+ " 0 0 0 0 0 0 0 0 0 0]]\n",
619
+ "Label: 4\n",
620
+ "\n",
621
+ "\n"
622
+ ]
623
+ }
624
+ ],
625
+ "source": [
626
+ "import tensorflow as tf\n",
627
+ "from tensorflow.keras.datasets import mnist\n",
628
+ "\n",
629
+ "# Load MNIST data\n",
630
+ "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
631
+ "\n",
632
+ "# Display the first 10 records\n",
633
+ "for i in range(10):\n",
634
+ " print(f\"Record {i+1}:\")\n",
635
+ " print(f\"Image:\\n{x_train[i]}\")\n",
636
+ " print(f\"Label: {y_train[i]}\")\n",
637
+ " print(\"\\n\")\n"
638
+ ]
639
+ },
640
+ {
641
+ "cell_type": "code",
642
+ "execution_count": 2,
643
+ "metadata": {},
644
+ "outputs": [
645
+ {
646
+ "name": "stdout",
647
+ "output_type": "stream",
648
+ "text": [
649
+ "Collecting tensorflow\n",
650
+ " Downloading tensorflow-2.16.2-cp310-cp310-macosx_12_0_arm64.whl (227.0 MB)\n",
651
+ "\u001b[K |████████████████████████████████| 227.0 MB 50.3 MB/s eta 0:00:01\n",
652
+ "\u001b[?25hCollecting h5py>=3.10.0\n",
653
+ " Using cached h5py-3.11.0-cp310-cp310-macosx_11_0_arm64.whl (2.9 MB)\n",
654
+ "Collecting libclang>=13.0.0\n",
655
+ " Using cached libclang-18.1.1-py2.py3-none-macosx_11_0_arm64.whl (26.4 MB)\n",
656
+ "Requirement already satisfied: opt-einsum>=2.3.2 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (3.3.0)\n",
657
+ "Collecting astunparse>=1.6.0\n",
658
+ " Using cached astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\n",
659
+ "Collecting keras>=3.0.0\n",
660
+ " Downloading keras-3.4.1-py3-none-any.whl (1.1 MB)\n",
661
+ "\u001b[K |████████████████████████████████| 1.1 MB 23.7 MB/s eta 0:00:01\n",
662
+ "\u001b[?25hCollecting ml-dtypes~=0.3.1\n",
663
+ " Using cached ml_dtypes-0.3.2-cp310-cp310-macosx_10_9_universal2.whl (389 kB)\n",
664
+ "Requirement already satisfied: typing-extensions>=3.6.6 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (4.11.0)\n",
665
+ "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (1.64.1)\n",
666
+ "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (3.20.3)\n",
667
+ "Requirement already satisfied: six>=1.12.0 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (1.16.0)\n",
668
+ "Requirement already satisfied: absl-py>=1.0.0 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (2.1.0)\n",
669
+ "Collecting google-pasta>=0.1.1\n",
670
+ " Using cached google_pasta-0.2.0-py3-none-any.whl (57 kB)\n",
671
+ "Collecting tensorboard<2.17,>=2.16\n",
672
+ " Using cached tensorboard-2.16.2-py3-none-any.whl (5.5 MB)\n",
673
+ "Requirement already satisfied: wrapt>=1.11.0 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (1.16.0)\n",
674
+ "Requirement already satisfied: numpy<2.0.0,>=1.23.5 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (1.26.4)\n",
675
+ "Requirement already satisfied: setuptools in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (70.1.0)\n",
676
+ "Requirement already satisfied: termcolor>=1.1.0 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (2.4.0)\n",
677
+ "Collecting tensorflow-io-gcs-filesystem>=0.23.1\n",
678
+ " Using cached tensorflow_io_gcs_filesystem-0.37.0-cp310-cp310-macosx_12_0_arm64.whl (3.5 MB)\n",
679
+ "Requirement already satisfied: flatbuffers>=23.5.26 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (24.3.25)\n",
680
+ "Requirement already satisfied: packaging in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (24.0)\n",
681
+ "Collecting gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1\n",
682
+ " Downloading gast-0.6.0.tar.gz (27 kB)\n",
683
+ "Requirement already satisfied: requests<3,>=2.21.0 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorflow) (2.32.3)\n",
684
+ "Collecting wheel<1.0,>=0.23.0\n",
685
+ " Using cached wheel-0.43.0-py3-none-any.whl (65 kB)\n",
686
+ "Requirement already satisfied: rich in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from keras>=3.0.0->tensorflow) (13.7.1)\n",
687
+ "Collecting optree\n",
688
+ " Using cached optree-0.11.0-cp310-cp310-macosx_11_0_arm64.whl (273 kB)\n",
689
+ "Collecting namex\n",
690
+ " Using cached namex-0.0.8-py3-none-any.whl (5.8 kB)\n",
691
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorflow) (3.3.2)\n",
692
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorflow) (2.2.2)\n",
693
+ "Requirement already satisfied: certifi>=2017.4.17 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorflow) (2024.6.2)\n",
694
+ "Requirement already satisfied: idna<4,>=2.5 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorflow) (3.7)\n",
695
+ "Requirement already satisfied: werkzeug>=1.0.1 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from tensorboard<2.17,>=2.16->tensorflow) (2.2.3)\n",
696
+ "Collecting tensorboard-data-server<0.8.0,>=0.7.0\n",
697
+ " Using cached tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB)\n",
698
+ "Collecting markdown>=2.6.8\n",
699
+ " Using cached Markdown-3.6-py3-none-any.whl (105 kB)\n",
700
+ "Requirement already satisfied: MarkupSafe>=2.1.1 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from werkzeug>=1.0.1->tensorboard<2.17,>=2.16->tensorflow) (2.1.5)\n",
701
+ "Requirement already satisfied: markdown-it-py>=2.2.0 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from rich->keras>=3.0.0->tensorflow) (3.0.0)\n",
702
+ "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from rich->keras>=3.0.0->tensorflow) (2.17.2)\n",
703
+ "Requirement already satisfied: mdurl~=0.1 in /Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/site-packages (from markdown-it-py>=2.2.0->rich->keras>=3.0.0->tensorflow) (0.1.2)\n",
704
+ "Using legacy 'setup.py install' for gast, since package 'wheel' is not installed.\n",
705
+ "Installing collected packages: wheel, tensorboard-data-server, optree, namex, ml-dtypes, markdown, h5py, tensorflow-io-gcs-filesystem, tensorboard, libclang, keras, google-pasta, gast, astunparse, tensorflow\n",
706
+ " Attempting uninstall: ml-dtypes\n",
707
+ " Found existing installation: ml-dtypes 0.4.0\n",
708
+ " Uninstalling ml-dtypes-0.4.0:\n",
709
+ " Successfully uninstalled ml-dtypes-0.4.0\n",
710
+ " Running setup.py install for gast ... \u001b[?25ldone\n",
711
+ "\u001b[?25hSuccessfully installed astunparse-1.6.3 gast-0.6.0 google-pasta-0.2.0 h5py-3.11.0 keras-3.4.1 libclang-18.1.1 markdown-3.6 ml-dtypes-0.3.2 namex-0.0.8 optree-0.11.0 tensorboard-2.16.2 tensorboard-data-server-0.7.2 tensorflow-2.16.2 tensorflow-io-gcs-filesystem-0.37.0 wheel-0.43.0\n",
712
+ "\u001b[33mWARNING: You are using pip version 21.2.3; however, version 24.1.1 is available.\n",
713
+ "You should consider upgrading via the '/Users/nihar/.pyenv/versions/3.10.0/bin/python3.10 -m pip install --upgrade pip' command.\u001b[0m\n"
714
+ ]
715
+ }
716
+ ],
717
+ "source": [
718
+ "!pip install tensorflow"
719
+ ]
720
+ },
721
+ {
722
+ "cell_type": "code",
723
+ "execution_count": 5,
724
+ "metadata": {},
725
+ "outputs": [
726
+ {
727
+ "name": "stdout",
728
+ "output_type": "stream",
729
+ "text": [
730
+ "zsh:1: unmatched \"\n"
731
+ ]
732
+ },
733
+ {
734
+ "name": "stderr",
735
+ "output_type": "stream",
736
+ "text": [
737
+ "/Users/nihar/.pyenv/versions/3.10.0/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n",
738
+ " pid, fd = os.forkpty()\n"
739
+ ]
740
+ }
741
+ ],
742
+ "source": [
743
+ "!streamlit run /Users/nihar/Desktop/Desktop - nihar’s MacBook Air/cc/code files/auto-ML/NNbasics/code.py\""
744
+ ]
745
+ },
746
+ {
747
+ "cell_type": "code",
748
+ "execution_count": null,
749
+ "metadata": {},
750
+ "outputs": [
751
+ {
752
+ "ename": "",
753
+ "evalue": "",
754
+ "output_type": "error",
755
+ "traceback": [
756
+ "\u001b[1;31mRunning cells with 'Python 3.12.3' requires the ipykernel package.\n",
757
+ "\u001b[1;31mRun the following command to install 'ipykernel' into the Python environment. \n",
758
+ "\u001b[1;31mCommand: '/opt/homebrew/bin/python3 -m pip install ipykernel -U --user --force-reinstall'"
759
+ ]
760
+ }
761
+ ],
762
+ "source": [
763
+ "!streamlit run \"/Users/nihar/Desktop/Desktop - nihar’s MacBook Air/cc/code files/auto-ML/NNbasics/code.py\""
764
+ ]
765
+ }
766
+ ],
767
+ "metadata": {
768
+ "kernelspec": {
769
+ "display_name": "Python 3",
770
+ "language": "python",
771
+ "name": "python3"
772
+ },
773
+ "language_info": {
774
+ "codemirror_mode": {
775
+ "name": "ipython",
776
+ "version": 3
777
+ },
778
+ "file_extension": ".py",
779
+ "mimetype": "text/x-python",
780
+ "name": "python",
781
+ "nbconvert_exporter": "python",
782
+ "pygments_lexer": "ipython3",
783
+ "version": "3.10.0"
784
+ }
785
+ },
786
+ "nbformat": 4,
787
+ "nbformat_minor": 2
788
+ }
gitflow.png ADDED
modelllls/mnist_model_lr0.00010699_bs16_epochs10.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8101428747177124, 0.9060476422309875, 0.9215714335441589, 0.9313809275627136, 0.939047634601593, 0.9451904892921448, 0.94990473985672, 0.9539999961853027, 0.9575714468955994, 0.9613333344459534], "loss": [0.7817313075065613, 0.3564141094684601, 0.29254043102264404, 0.25579363107681274, 0.22843895852565765, 0.20622915029525757, 0.18763558566570282, 0.17187713086605072, 0.15824772417545319, 0.1462687849998474], "val_accuracy": [0.8966666460037231, 0.9135000109672546, 0.9213333129882812, 0.9254999756813049, 0.9316666722297668, 0.9353333115577698, 0.9375, 0.9403333067893982, 0.9426666498184204, 0.9449999928474426], "val_loss": [0.4103447198867798, 0.32245296239852905, 0.28662702441215515, 0.2637491822242737, 0.24623219668865204, 0.2316875159740448, 0.21974694728851318, 0.20967398583889008, 0.201065331697464, 0.19372345507144928]}
modelllls/mnist_model_lr0.00010699_bs16_epochs30.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8057619333267212, 0.9057142734527588, 0.9221904873847961, 0.9309999942779541, 0.9367619156837463, 0.9427618980407715, 0.9472857117652893, 0.9515237808227539, 0.9552857279777527, 0.958142876625061, 0.9611428380012512, 0.9634761810302734, 0.9656190276145935, 0.9679047465324402, 0.9705238342285156, 0.9730952382087708, 0.9750000238418579, 0.9767143130302429, 0.9785237908363342, 0.9798571467399597, 0.9810000061988831, 0.9825237989425659, 0.9835237860679626, 0.9849047660827637, 0.9860952496528625, 0.9873809814453125, 0.9881904721260071, 0.9888571500778198, 0.9896190762519836, 0.9907143115997314], "loss": [0.7918907999992371, 0.3563086688518524, 0.29286807775497437, 0.25690367817878723, 0.23094280064105988, 0.2102443426847458, 0.19292834401130676, 0.17797234654426575, 0.16496260464191437, 0.15339882671833038, 0.14303062856197357, 0.13365809619426727, 0.12509094178676605, 0.1172587051987648, 0.11007127910852432, 0.10339892655611038, 0.09721706062555313, 0.09151709079742432, 0.0862172320485115, 0.08125454932451248, 0.0766054019331932, 0.07222742587327957, 0.06813890486955643, 0.06430242210626602, 0.06062851846218109, 0.0572030209004879, 0.05395415425300598, 0.050841908901929855, 0.04792232811450958, 0.04514409974217415], "val_accuracy": [0.8963333368301392, 0.9120000004768372, 0.92166668176651, 0.9269999861717224, 0.9298333525657654, 0.9333333373069763, 0.9359999895095825, 0.9394999742507935, 0.9411666393280029, 0.9433333277702332, 0.9448333382606506, 0.9465000033378601, 0.9484999775886536, 0.9490000009536743, 0.9496666789054871, 0.9503333568572998, 0.9505000114440918, 0.9506666660308838, 0.9514999985694885, 0.9514999985694885, 0.952833354473114, 0.95333331823349, 0.9545000195503235, 0.9548333287239075, 0.9551666378974915, 0.956166684627533, 0.9568333625793457, 0.9574999809265137, 0.9586666822433472, 0.9586666822433472], "val_loss": [0.41579166054725647, 0.3257690966129303, 0.2883889377117157, 0.2653798758983612, 0.2484758049249649, 0.23501554131507874, 0.22357948124408722, 0.2140267789363861, 0.20581844449043274, 0.19859865307807922, 0.1923246830701828, 0.1868634819984436, 0.18195359408855438, 0.17757926881313324, 0.17362384498119354, 0.170135959982872, 0.16720375418663025, 0.16466055810451508, 0.1623077690601349, 0.16021354496479034, 0.1582859754562378, 0.1567038744688034, 0.15504762530326843, 0.1537654995918274, 0.1525036245584488, 0.15163001418113708, 0.15073032677173615, 0.14984722435474396, 0.14937157928943634, 0.14871229231357574]}
modelllls/mnist_model_lr0.00010699_bs256_epochs15.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.49823808670043945, 0.7927619218826294, 0.843999981880188, 0.8662857413291931, 0.8812857270240784, 0.8906190395355225, 0.8973809480667114, 0.9031428694725037, 0.9082381129264832, 0.9126190543174744, 0.9164761900901794, 0.9192857146263123, 0.9218571186065674, 0.9242857098579407, 0.9263333082199097], "loss": [1.808445692062378, 1.0704137086868286, 0.7383213639259338, 0.5863801836967468, 0.5016915202140808, 0.44753775000572205, 0.4094438850879669, 0.3810270428657532, 0.3587932586669922, 0.3406886160373688, 0.3254745304584503, 0.31238025426864624, 0.3008793592453003, 0.2906244993209839, 0.2813545763492584], "val_accuracy": [0.7308333516120911, 0.8180000185966492, 0.8538333177566528, 0.8723333477973938, 0.8815000057220459, 0.8918333053588867, 0.8980000019073486, 0.9023333191871643, 0.906166672706604, 0.9101666808128357, 0.9129999876022339, 0.9153333306312561, 0.9176666736602783, 0.9198333621025085, 0.9211666584014893], "val_loss": [1.3497545719146729, 0.8551756739616394, 0.6485476493835449, 0.5420393943786621, 0.47777941823005676, 0.43439385294914246, 0.40313616394996643, 0.3793880343437195, 0.360640287399292, 0.34530502557754517, 0.3324356973171234, 0.32141029834747314, 0.31181225180625916, 0.3033219873905182, 0.2957322895526886]}
modelllls/mnist_model_lr0.00010699_bs256_epochs35.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.5066190361976624, 0.7944285869598389, 0.8455238342285156, 0.8679524064064026, 0.8809523582458496, 0.8905237913131714, 0.8990476131439209, 0.9041904807090759, 0.9082857370376587, 0.911809504032135, 0.9157618880271912, 0.9184761643409729, 0.921238124370575, 0.9231428503990173, 0.9256666898727417, 0.9280952215194702, 0.9297142624855042, 0.9320476055145264, 0.933904767036438, 0.9357143044471741, 0.9369999766349792, 0.938619077205658, 0.9401904940605164, 0.9411428570747375, 0.9421428442001343, 0.943142831325531, 0.9437618851661682, 0.9450952410697937, 0.9460952281951904, 0.9468571543693542, 0.948285698890686, 0.949238121509552, 0.9498571157455444, 0.9507619142532349, 0.9519523978233337], "loss": [1.8029488325119019, 1.0755181312561035, 0.742518961429596, 0.5863374471664429, 0.5000607967376709, 0.445891410112381, 0.4084782004356384, 0.38060492277145386, 0.3587525486946106, 0.3409407138824463, 0.32597577571868896, 0.31310126185417175, 0.301827073097229, 0.29177525639533997, 0.2827118933200836, 0.27446284890174866, 0.2668745219707489, 0.2598170042037964, 0.2532217800617218, 0.2470141351222992, 0.24115554988384247, 0.23560798168182373, 0.2302926629781723, 0.22519241273403168, 0.220295250415802, 0.2155623435974121, 0.21098333597183228, 0.20656852424144745, 0.20230694115161896, 0.19817771017551422, 0.19419868290424347, 0.19037935137748718, 0.1866801530122757, 0.18309226632118225, 0.17959897220134735], "val_accuracy": [0.7383333444595337, 0.8246666789054871, 0.8573333621025085, 0.8744999766349792, 0.8845000267028809, 0.8931666612625122, 0.8991666436195374, 0.9038333296775818, 0.9071666598320007, 0.909500002861023, 0.9125000238418579, 0.9151666760444641, 0.9173333048820496, 0.9194999933242798, 0.921833336353302, 0.9238333106040955, 0.9246666431427002, 0.9265000224113464, 0.9278333187103271, 0.9291666746139526, 0.9300000071525574, 0.9304999709129333, 0.9316666722297668, 0.9326666593551636, 0.9340000152587891, 0.934166669845581, 0.9351666569709778, 0.9356666803359985, 0.9365000128746033, 0.9365000128746033, 0.9366666674613953, 0.9375, 0.9380000233650208, 0.9383333325386047, 0.9391666650772095], "val_loss": [1.3418829441070557, 0.8574155569076538, 0.6465845704078674, 0.5378239750862122, 0.4730492830276489, 0.43057888746261597, 0.4002175033092499, 0.3771829903125763, 0.3589726686477661, 0.3441089391708374, 0.3316633701324463, 0.3210047483444214, 0.3117533326148987, 0.30357474088668823, 0.2962852716445923, 0.2896718680858612, 0.28366944193840027, 0.27814731001853943, 0.2730546295642853, 0.26828813552856445, 0.2637822926044464, 0.25956305861473083, 0.2555522620677948, 0.25177711248397827, 0.2481713443994522, 0.24472525715827942, 0.24139614403247833, 0.23820550739765167, 0.23513010144233704, 0.23214979469776154, 0.2293228954076767, 0.2266106754541397, 0.2239658683538437, 0.22141310572624207, 0.2189568728208542]}
modelllls/mnist_model_lr0.00010699_bs512_epochs45.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.2866666615009308, 0.6496666669845581, 0.7724761962890625, 0.8144285678863525, 0.8376190662384033, 0.852571427822113, 0.8652380704879761, 0.8735238313674927, 0.8798094987869263, 0.8863809704780579, 0.8915714025497437, 0.8966666460037231, 0.9001904726028442, 0.9040476083755493, 0.9069523811340332, 0.9088571667671204, 0.9111904501914978, 0.9140952229499817, 0.9164761900901794, 0.9183333516120911, 0.9200952649116516, 0.9210952520370483, 0.9228571653366089, 0.9243809580802917, 0.9256666898727417, 0.9269999861717224, 0.9280952215194702, 0.9293809533119202, 0.9307143092155457, 0.9317142963409424, 0.9329047799110413, 0.933904767036438, 0.9350952506065369, 0.935952365398407, 0.9369999766349792, 0.9381428360939026, 0.9391904473304749, 0.9398095011711121, 0.9405714273452759, 0.9413809776306152, 0.9419999718666077, 0.9430000185966492, 0.944190502166748, 0.944857120513916, 0.9454285502433777], "loss": [2.136888027191162, 1.6458951234817505, 1.245214581489563, 0.9727680683135986, 0.7999721169471741, 0.6863153576850891, 0.6080009341239929, 0.5508472323417664, 0.5074108242988586, 0.47315356135368347, 0.44552263617515564, 0.422736793756485, 0.4035114049911499, 0.38707128167152405, 0.37273669242858887, 0.3601139783859253, 0.3487775921821594, 0.33851298689842224, 0.3291107416152954, 0.3204856514930725, 0.31247252225875854, 0.30501747131347656, 0.298064649105072, 0.2915496528148651, 0.28543317317962646, 0.2796522080898285, 0.27416902780532837, 0.26895904541015625, 0.2639641761779785, 0.2591976523399353, 0.25461965799331665, 0.2502005100250244, 0.24596582353115082, 0.24186907708644867, 0.23791860044002533, 0.23409028351306915, 0.23038709163665771, 0.2267945259809494, 0.22331589460372925, 0.21993868052959442, 0.2166602462530136, 0.2134610265493393, 0.21034830808639526, 0.20731878280639648, 0.2043657898902893], "val_accuracy": [0.5164999961853027, 0.7381666898727417, 0.7904999852180481, 0.8226666450500488, 0.843500018119812, 0.8544999957084656, 0.8659999966621399, 0.871666669845581, 0.8776666522026062, 0.8834999799728394, 0.8891666531562805, 0.8924999833106995, 0.8951666951179504, 0.8986666798591614, 0.9011666774749756, 0.902999997138977, 0.9053333401679993, 0.9079999923706055, 0.9116666913032532, 0.9133333563804626, 0.9144999980926514, 0.9169999957084656, 0.918833315372467, 0.9200000166893005, 0.9206666946411133, 0.9211666584014893, 0.921999990940094, 0.9225000143051147, 0.9235000014305115, 0.9241666793823242, 0.9246666431427002, 0.925000011920929, 0.9259999990463257, 0.9266666769981384, 0.9269999861717224, 0.9268333315849304, 0.9276666641235352, 0.9294999837875366, 0.9298333525657654, 0.9301666617393494, 0.9303333163261414, 0.9323333501815796, 0.9326666593551636, 0.9330000281333923, 0.9338333606719971], "val_loss": [1.8607810735702515, 1.4162147045135498, 1.0854722261428833, 0.8763355016708374, 0.7401376366615295, 0.6485239863395691, 0.5831971168518066, 0.5345224738121033, 0.4970676004886627, 0.4672972559928894, 0.44304192066192627, 0.42288798093795776, 0.4058716297149658, 0.3912270963191986, 0.3784286379814148, 0.367114782333374, 0.35695287585258484, 0.3478102684020996, 0.33953431248664856, 0.331989049911499, 0.3250702917575836, 0.31867533922195435, 0.31276392936706543, 0.3072882294654846, 0.30215758085250854, 0.2973829507827759, 0.2928876578807831, 0.2886475920677185, 0.2846439778804779, 0.2808491587638855, 0.27723416686058044, 0.27377569675445557, 0.2704816162586212, 0.2673390209674835, 0.26434817910194397, 0.2614802122116089, 0.25873515009880066, 0.25608667731285095, 0.25352492928504944, 0.2510437071323395, 0.24865075945854187, 0.24636037647724152, 0.24414490163326263, 0.2419981211423874, 0.2399197220802307]}
modelllls/mnist_model_lr0.00012839_bs16_epochs50.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8221904635429382, 0.9139524102210999, 0.9283333420753479, 0.937333345413208, 0.9450952410697937, 0.9515714049339294, 0.9569047689437866, 0.959857165813446, 0.9628095030784607, 0.9660952091217041, 0.9693333506584167, 0.972000002861023, 0.974142849445343, 0.9763333201408386, 0.9780952334403992, 0.9803333282470703, 0.9822381138801575, 0.984000027179718, 0.9852856993675232, 0.9871428608894348, 0.9881428480148315, 0.9893333315849304, 0.9901905059814453, 0.9913809299468994, 0.9922857284545898, 0.9931904673576355, 0.9940952658653259, 0.9949047565460205, 0.9954761862754822, 0.9957619309425354, 0.9965237975120544, 0.996999979019165, 0.9976190328598022, 0.9979047775268555, 0.9983809590339661, 0.99871426820755, 0.9989523887634277, 0.9991904497146606, 0.9992856979370117, 0.9994761943817139, 0.9994761943817139, 0.999666690826416, 0.999666690826416, 0.9997618794441223, 0.9997618794441223, 0.9999047517776489, 0.9999047517776489, 0.9999047517776489, 0.9999047517776489, 1.0], "loss": [0.731702446937561, 0.3300863206386566, 0.2688859701156616, 0.2320781946182251, 0.2050735205411911, 0.18364228308200836, 0.1659635454416275, 0.15097056329250336, 0.13796009123325348, 0.12652379274368286, 0.11634062230587006, 0.10724889487028122, 0.09898406267166138, 0.09151001274585724, 0.08467079699039459, 0.07843437790870667, 0.07267109304666519, 0.06741930544376373, 0.0625280812382698, 0.05798843875527382, 0.05377328768372536, 0.04983576759696007, 0.04614501819014549, 0.04272100701928139, 0.03951342776417732, 0.03655440732836723, 0.033778104931116104, 0.03120272420346737, 0.02877664379775524, 0.026538031175732613, 0.024435441941022873, 0.022465625777840614, 0.020629892125725746, 0.018954958766698837, 0.01737401820719242, 0.015889478847384453, 0.014541123062372208, 0.013258490711450577, 0.012114902026951313, 0.011040648445487022, 0.010026688687503338, 0.009120123460888863, 0.008268038742244244, 0.0074732303619384766, 0.006749559659510851, 0.006091613322496414, 0.0054634432308375835, 0.004902903456240892, 0.004386578686535358, 0.00392640195786953], "val_accuracy": [0.8998333215713501, 0.9153333306312561, 0.9254999756813049, 0.9318333268165588, 0.9363333582878113, 0.9390000104904175, 0.940666675567627, 0.9434999823570251, 0.9455000162124634, 0.9481666684150696, 0.9488333463668823, 0.949999988079071, 0.9513333439826965, 0.953000009059906, 0.95333331823349, 0.9545000195503235, 0.9556666612625122, 0.956166684627533, 0.9573333263397217, 0.9574999809265137, 0.9583333134651184, 0.9583333134651184, 0.9580000042915344, 0.9583333134651184, 0.9596666693687439, 0.9599999785423279, 0.9603333473205566, 0.9610000252723694, 0.9606666564941406, 0.9603333473205566, 0.9603333473205566, 0.9608333110809326, 0.9613333344459534, 0.9611666798591614, 0.9614999890327454, 0.9620000123977661, 0.9624999761581421, 0.9629999995231628, 0.9628333449363708, 0.9635000228881836, 0.9629999995231628, 0.9629999995231628, 0.9631666541099548, 0.9636666774749756, 0.9639999866485596, 0.9639999866485596, 0.9639999866485596, 0.9641666412353516, 0.9641666412353516, 0.9641666412353516], "val_loss": [0.38328081369400024, 0.30289629101753235, 0.26677921414375305, 0.24368135631084442, 0.22689157724380493, 0.21384090185165405, 0.20301522314548492, 0.19366632401943207, 0.18569684028625488, 0.1789463311433792, 0.1728651374578476, 0.16763657331466675, 0.16316711902618408, 0.1592746526002884, 0.15598906576633453, 0.1532812863588333, 0.15074802935123444, 0.1485016644001007, 0.14666816592216492, 0.14505091309547424, 0.14341673254966736, 0.14204511046409607, 0.1409166306257248, 0.13994494080543518, 0.1391095072031021, 0.13848556578159332, 0.1379527896642685, 0.13769035041332245, 0.13755810260772705, 0.1374199539422989, 0.1376481056213379, 0.13772647082805634, 0.13791917264461517, 0.1384766697883606, 0.13901905715465546, 0.13977286219596863, 0.1404941976070404, 0.14117197692394257, 0.14193537831306458, 0.1425701379776001, 0.1438090205192566, 0.14466612040996552, 0.14581099152565002, 0.14685112237930298, 0.14815975725650787, 0.14949572086334229, 0.15068559348583221, 0.15215156972408295, 0.1540905088186264, 0.15550614893436432]}
modelllls/mnist_model_lr0.00012839_bs32_epochs20.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.788095235824585, 0.9022380709648132, 0.9184761643409729, 0.9294762015342712, 0.9360952377319336, 0.9417142868041992, 0.9463809728622437, 0.9510475993156433, 0.9546666741371155, 0.9578095078468323, 0.960523784160614, 0.9632856845855713, 0.9658571481704712, 0.9683333039283752, 0.969952404499054, 0.9717618823051453, 0.9731428623199463, 0.9748095273971558, 0.9769523739814758, 0.9785237908363342], "loss": [0.9133039712905884, 0.38094326853752136, 0.30612292885780334, 0.26603811979293823, 0.2379925400018692, 0.21612827479839325, 0.19803999364376068, 0.18262580037117004, 0.16926269233226776, 0.15745937824249268, 0.14692623913288116, 0.13745048642158508, 0.12888450920581818, 0.1210554987192154, 0.11387280374765396, 0.10724911838769913, 0.10113875567913055, 0.09551247209310532, 0.09028381109237671, 0.08541987091302872], "val_accuracy": [0.887666642665863, 0.9071666598320007, 0.9178333282470703, 0.9269999861717224, 0.9315000176429749, 0.9363333582878113, 0.9394999742507935, 0.9416666626930237, 0.9426666498184204, 0.9440000057220459, 0.9448333382606506, 0.9463333487510681, 0.9474999904632568, 0.9495000243186951, 0.949999988079071, 0.9505000114440918, 0.9518333077430725, 0.9521666765213013, 0.9524999856948853, 0.953000009059906], "val_loss": [0.4576706886291504, 0.34358975291252136, 0.2986718416213989, 0.2715437412261963, 0.2520689368247986, 0.23678292334079742, 0.22444754838943481, 0.2141137421131134, 0.20534305274486542, 0.19776751101016998, 0.19114702939987183, 0.18532387912273407, 0.18028682470321655, 0.17572517693042755, 0.17169372737407684, 0.1680244505405426, 0.16480189561843872, 0.16197973489761353, 0.15950798988342285, 0.15717417001724243]}
modelllls/mnist_model_lr0.00012839_bs64_epochs25.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.7023333311080933, 0.8825713992118835, 0.9041904807090759, 0.914476215839386, 0.9225714206695557, 0.9290000200271606, 0.934333324432373, 0.9386666417121887, 0.9425238370895386, 0.9458571672439575, 0.9480952620506287, 0.950952410697937, 0.9535714387893677, 0.9559999704360962, 0.958380937576294, 0.960523784160614, 0.9624285697937012, 0.963952362537384, 0.9660952091217041, 0.9677143096923828, 0.9690476059913635, 0.9706190228462219, 0.9717618823051453, 0.9727619290351868, 0.973809540271759], "loss": [1.1860876083374023, 0.4907549321651459, 0.37550535798072815, 0.3235485255718231, 0.2908934950828552, 0.266184002161026, 0.24621719121932983, 0.2294786125421524, 0.21509802341461182, 0.202487975358963, 0.1912841647863388, 0.18115274608135223, 0.17186588048934937, 0.16331332921981812, 0.1553795337677002, 0.1480562388896942, 0.14125673472881317, 0.13492955267429352, 0.12899433076381683, 0.12344428151845932, 0.11821909993886948, 0.11329961568117142, 0.10867243260145187, 0.10427315533161163, 0.10010471194982529], "val_accuracy": [0.8611666560173035, 0.8974999785423279, 0.909500002861023, 0.9178333282470703, 0.922166645526886, 0.9263333082199097, 0.9315000176429749, 0.9348333477973938, 0.9358333349227905, 0.937666654586792, 0.9401666522026062, 0.9411666393280029, 0.9424999952316284, 0.9434999823570251, 0.9441666603088379, 0.9446666836738586, 0.9461666941642761, 0.9471666812896729, 0.9483333230018616, 0.9496666789054871, 0.9503333568572998, 0.949999988079071, 0.9508333206176758, 0.9513333439826965, 0.9526666402816772], "val_loss": [0.6058019399642944, 0.4134097993373871, 0.34642553329467773, 0.31088024377822876, 0.28728187084198, 0.26913467049598694, 0.2550009489059448, 0.2430921047925949, 0.23300722241401672, 0.22426718473434448, 0.21656595170497894, 0.2097320556640625, 0.2035144865512848, 0.1978679746389389, 0.19268225133419037, 0.18791355192661285, 0.18350213766098022, 0.17946189641952515, 0.17567288875579834, 0.1721498817205429, 0.16894413530826569, 0.1659306436777115, 0.16320139169692993, 0.16069665551185608, 0.15838490426540375]}
modelllls/mnist_model_lr0.00015407_bs16_epochs10.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8203809261322021, 0.9158095121383667, 0.930142879486084, 0.9397143125534058, 0.9470475912094116, 0.9525238275527954, 0.9575714468955994, 0.9617142677307129, 0.965666651725769, 0.9693333506584167], "loss": [0.7036554217338562, 0.31702354550361633, 0.2575250566005707, 0.22164404392242432, 0.19464688003063202, 0.17302903532981873, 0.15514637529850006, 0.14006103575229645, 0.1269882768392563, 0.11551357060670853], "val_accuracy": [0.9028333425521851, 0.9183333516120911, 0.9279999732971191, 0.934499979019165, 0.937166690826416, 0.940500020980835, 0.9416666626930237, 0.9445000290870667, 0.9465000033378601, 0.9480000138282776], "val_loss": [0.3678182363510132, 0.2919725477695465, 0.25867554545402527, 0.23656795918941498, 0.21933618187904358, 0.20619311928749084, 0.19558843970298767, 0.1867295503616333, 0.1793307662010193, 0.17330315709114075]}
modelllls/mnist_model_lr0.00015407_bs16_epochs30.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8286666870117188, 0.9187142848968506, 0.9325714111328125, 0.9420952200889587, 0.9489523768424988, 0.9551904797554016, 0.960095226764679, 0.9638095498085022, 0.9664762020111084, 0.9695237874984741, 0.972095251083374, 0.9752380847930908, 0.977571427822113, 0.9800952672958374, 0.982619047164917, 0.9841904640197754, 0.9850476384162903, 0.9864761829376221, 0.9879047870635986, 0.9897618889808655, 0.9915714263916016, 0.9925237894058228, 0.9934285879135132, 0.9940476417541504, 0.9945714473724365, 0.9954761862754822, 0.9962857365608215, 0.9968571662902832, 0.9973333477973938, 0.9980000257492065], "loss": [0.6882665753364563, 0.30780503153800964, 0.24999584257602692, 0.2150556892156601, 0.18897747993469238, 0.168110653758049, 0.15080825984477997, 0.13605251908302307, 0.12327385693788528, 0.11213726550340652, 0.10236188769340515, 0.09362876415252686, 0.08575250953435898, 0.07863157987594604, 0.07208912074565887, 0.06617686152458191, 0.06074666976928711, 0.05577249452471733, 0.05118090286850929, 0.04691417142748833, 0.04300656169652939, 0.03935069590806961, 0.03600219637155533, 0.032907355576753616, 0.030002102255821228, 0.02731294557452202, 0.02486712858080864, 0.022570908069610596, 0.02044113352894783, 0.01850251853466034], "val_accuracy": [0.906166672706604, 0.9228333234786987, 0.9303333163261414, 0.9359999895095825, 0.9399999976158142, 0.9419999718666077, 0.9455000162124634, 0.9474999904632568, 0.9496666789054871, 0.9511666893959045, 0.9509999752044678, 0.9520000219345093, 0.95333331823349, 0.9549999833106995, 0.9558333158493042, 0.9558333158493042, 0.956333339214325, 0.9574999809265137, 0.9583333134651184, 0.9593333601951599, 0.9603333473205566, 0.9603333473205566, 0.9605000019073486, 0.9614999890327454, 0.9616666436195374, 0.9614999890327454, 0.9614999890327454, 0.9613333344459534, 0.9620000123977661, 0.9618333578109741], "val_loss": [0.3581981956958771, 0.2857939600944519, 0.25396838784217834, 0.23276424407958984, 0.2168051153421402, 0.20408426225185394, 0.19365565478801727, 0.1848631054162979, 0.17728574573993683, 0.17095406353473663, 0.1654967963695526, 0.16089868545532227, 0.15687842667102814, 0.15333972871303558, 0.15069405734539032, 0.14832106232643127, 0.14651447534561157, 0.1446715146303177, 0.14321842789649963, 0.14205841720104218, 0.1410079002380371, 0.14054778218269348, 0.13983026146888733, 0.13963767886161804, 0.13954469561576843, 0.13983848690986633, 0.14006608724594116, 0.14040005207061768, 0.14094622433185577, 0.1414957046508789]}
modelllls/mnist_model_lr0.00015407_bs512_epochs50.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.38333332538604736, 0.7394285798072815, 0.8049523830413818, 0.8381428718566895, 0.8598095178604126, 0.8730000257492065, 0.8841428756713867, 0.8911904692649841, 0.8976666927337646, 0.9013809561729431, 0.9059047698974609, 0.909428596496582, 0.9128095507621765, 0.9147619009017944, 0.9175714254379272, 0.9196190237998962, 0.9214285612106323, 0.9235714077949524, 0.9252856969833374, 0.927476167678833, 0.9296190738677979, 0.930809497833252, 0.9324285984039307, 0.934333324432373, 0.9355714321136475, 0.9371904730796814, 0.9385238289833069, 0.9395238161087036, 0.9411428570747375, 0.9421904683113098, 0.9436190724372864, 0.9443809390068054, 0.9450476169586182, 0.9456190466880798, 0.9467142820358276, 0.9479047656059265, 0.9485714435577393, 0.9496666789054871, 0.9505714178085327, 0.9510952234268188, 0.9520952105522156, 0.9529047608375549, 0.9535714387893677, 0.9540476202964783, 0.9544285535812378, 0.9551904797554016, 0.9560475945472717, 0.9568095207214355, 0.95804762840271, 0.9590952396392822], "loss": [2.0103821754455566, 1.3445090055465698, 0.9389025568962097, 0.7275609374046326, 0.6085749864578247, 0.5326439738273621, 0.47999051213264465, 0.4411514699459076, 0.41127729415893555, 0.3875243663787842, 0.3680093586444855, 0.3516155481338501, 0.3375189006328583, 0.32520753145217896, 0.31428518891334534, 0.304426372051239, 0.29540976881980896, 0.28707757592201233, 0.2793835699558258, 0.27221906185150146, 0.26550793647766113, 0.2592132091522217, 0.2532723546028137, 0.24761560559272766, 0.24222956597805023, 0.23707619309425354, 0.23213660717010498, 0.2273525595664978, 0.2226894497871399, 0.21816611289978027, 0.21381084620952606, 0.20963600277900696, 0.20560815930366516, 0.20172333717346191, 0.19797223806381226, 0.19434426724910736, 0.19082273542881012, 0.1874130219221115, 0.1841001659631729, 0.1808895617723465, 0.1777700036764145, 0.1747419387102127, 0.171800434589386, 0.16892491281032562, 0.16612087190151215, 0.1633918583393097, 0.16072912514209747, 0.15812715888023376, 0.15558838844299316, 0.15311014652252197], "val_accuracy": [0.6706666946411133, 0.7770000100135803, 0.8208333253860474, 0.846833348274231, 0.8648333549499512, 0.8776666522026062, 0.8880000114440918, 0.8933333158493042, 0.8985000252723694, 0.9028333425521851, 0.9070000052452087, 0.909166693687439, 0.9103333353996277, 0.9116666913032532, 0.9139999747276306, 0.9151666760444641, 0.9164999723434448, 0.9185000061988831, 0.9201666712760925, 0.9228333234786987, 0.9233333468437195, 0.9244999885559082, 0.9259999990463257, 0.9269999861717224, 0.9284999966621399, 0.9294999837875366, 0.9304999709129333, 0.9316666722297668, 0.9325000047683716, 0.9331666827201843, 0.9338333606719971, 0.9340000152587891, 0.9346666932106018, 0.9351666569709778, 0.9355000257492065, 0.9365000128746033, 0.937333345413208, 0.9380000233650208, 0.9386666417121887, 0.9390000104904175, 0.9393333196640015, 0.9394999742507935, 0.9401666522026062, 0.940666675567627, 0.9415000081062317, 0.9416666626930237, 0.9416666626930237, 0.9421666860580444, 0.9430000185966492, 0.9433333277702332], "val_loss": [1.6236237287521362, 1.0985366106033325, 0.8154566884040833, 0.6640382409095764, 0.5721419453620911, 0.5106030106544495, 0.466581791639328, 0.4335533082485199, 0.4079272449016571, 0.387343168258667, 0.37035104632377625, 0.35609757900238037, 0.3438878655433655, 0.3332749903202057, 0.3239302635192871, 0.315585196018219, 0.3080294132232666, 0.30114543437957764, 0.2947830855846405, 0.2888927757740021, 0.28341439366340637, 0.2783122956752777, 0.27351900935173035, 0.2690339684486389, 0.2648119032382965, 0.26081886887550354, 0.2570183277130127, 0.2533782422542572, 0.24990910291671753, 0.2465895116329193, 0.24336916208267212, 0.240253746509552, 0.23727290332317352, 0.2343958467245102, 0.23163682222366333, 0.22898563742637634, 0.22643157839775085, 0.22398386895656586, 0.22164510190486908, 0.21940800547599792, 0.21721701323986053, 0.2151431143283844, 0.21311376988887787, 0.21116040647029877, 0.20925068855285645, 0.20738311111927032, 0.20557789504528046, 0.20383323729038239, 0.2021769881248474, 0.2005339413881302]}
modelllls/mnist_model_lr0.00015407_bs8_epochs45.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8591904640197754, 0.9269523620605469, 0.9419524073600769, 0.9523809552192688, 0.9592381119728088, 0.96490478515625, 0.9688571691513062, 0.9729047417640686, 0.9770476222038269, 0.9801904559135437, 0.9826666712760925, 0.9854285717010498, 0.9868571162223816, 0.9889047741889954, 0.9902380704879761, 0.9921428561210632, 0.9938095211982727, 0.9952380657196045, 0.9962857365608215, 0.996999979019165, 0.9976190328598022, 0.9981428384780884, 0.998619019985199, 0.9989523887634277, 0.9992380738258362, 0.9993809461593628, 0.9997618794441223, 0.9999047517776489, 0.9999047517776489, 0.9999523758888245, 0.9999523758888245, 0.9999523758888245, 0.9999523758888245, 0.9999523758888245, 0.9999523758888245, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], "loss": [0.5589702129364014, 0.2680814266204834, 0.21320605278015137, 0.17787706851959229, 0.15183649957180023, 0.1312739998102188, 0.11444780230522156, 0.10061778873205185, 0.08878099173307419, 0.07866369187831879, 0.06976736336946487, 0.06189128756523132, 0.05491930991411209, 0.04872627556324005, 0.04307987540960312, 0.03800589218735695, 0.03342477232217789, 0.029327895492315292, 0.02567470818758011, 0.02237747795879841, 0.01945585384964943, 0.016851114109158516, 0.014581707306206226, 0.01253011915832758, 0.010747535154223442, 0.009175390936434269, 0.007829937152564526, 0.006652540061622858, 0.005637534894049168, 0.004760861862450838, 0.003996993415057659, 0.0033292570151388645, 0.0027687549591064453, 0.0022629001177847385, 0.0018637070897966623, 0.001502891187556088, 0.0012398470425978303, 0.001007174258120358, 0.0008079851977527142, 0.0006525632925331593, 0.000517209293320775, 0.00041564038838259876, 0.00032949753222055733, 0.0002613887772895396, 0.00020628038328140974], "val_accuracy": [0.9136666655540466, 0.9275000095367432, 0.9366666674613953, 0.9411666393280029, 0.9445000290870667, 0.9476666450500488, 0.950166642665863, 0.9513333439826965, 0.9523333311080933, 0.9543333053588867, 0.9546666741371155, 0.9566666483879089, 0.9573333263397217, 0.9578333497047424, 0.9581666588783264, 0.9588333368301392, 0.9589999914169312, 0.9586666822433472, 0.9595000147819519, 0.9598333239555359, 0.9598333239555359, 0.9599999785423279, 0.9605000019073486, 0.9608333110809326, 0.9610000252723694, 0.9620000123977661, 0.9624999761581421, 0.9635000228881836, 0.9629999995231628, 0.9636666774749756, 0.9636666774749756, 0.9638333320617676, 0.9638333320617676, 0.9639999866485596, 0.9633333086967468, 0.9636666774749756, 0.9639999866485596, 0.9638333320617676, 0.9645000100135803, 0.9645000100135803, 0.9646666646003723, 0.9646666646003723, 0.9645000100135803, 0.9645000100135803, 0.9648333191871643], "val_loss": [0.3134908974170685, 0.2531121075153351, 0.2225540578365326, 0.20206318795681, 0.18724016845226288, 0.17587730288505554, 0.16747282445430756, 0.16087090969085693, 0.1557459682226181, 0.151786208152771, 0.14851784706115723, 0.14574465155601501, 0.14393319189548492, 0.14194327592849731, 0.1403973251581192, 0.1390877515077591, 0.13849863409996033, 0.13836674392223358, 0.13790929317474365, 0.13797485828399658, 0.1384173035621643, 0.13889187574386597, 0.13966643810272217, 0.14085757732391357, 0.1421608030796051, 0.14374537765979767, 0.14535000920295715, 0.14712859690189362, 0.14944247901439667, 0.15125377476215363, 0.1538311243057251, 0.15576677024364471, 0.15850509703159332, 0.161061093211174, 0.1641622930765152, 0.16719020903110504, 0.1709582358598709, 0.173649862408638, 0.17741642892360687, 0.1818711906671524, 0.18583577871322632, 0.1891537308692932, 0.19312825798988342, 0.19750308990478516, 0.20067757368087769]}
modelllls/mnist_model_lr0.00018488_bs128_epochs20.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.7030952572822571, 0.8750952482223511, 0.8997619152069092, 0.9108095169067383, 0.9192857146263123, 0.9262857437133789, 0.9313809275627136, 0.9357619285583496, 0.940761923789978, 0.9436666369438171, 0.9469524025917053, 0.9493333101272583, 0.951714277267456, 0.9540952444076538, 0.9568571448326111, 0.9590476155281067, 0.9608571529388428, 0.9629523754119873, 0.9643333554267883, 0.9657618999481201], "loss": [1.2379436492919922, 0.5148351192474365, 0.3899383246898651, 0.3350183069705963, 0.30076637864112854, 0.2757217586040497, 0.2560175657272339, 0.2395525425672531, 0.22509586811065674, 0.2120281159877777, 0.20021618902683258, 0.1894952952861786, 0.17965322732925415, 0.17057055234909058, 0.16215816140174866, 0.15433722734451294, 0.14705434441566467, 0.14024581015110016, 0.13390682637691498, 0.1280166059732437], "val_accuracy": [0.8558333516120911, 0.8920000195503235, 0.9038333296775818, 0.9129999876022339, 0.9198333621025085, 0.9240000247955322, 0.9290000200271606, 0.9309999942779541, 0.9331666827201843, 0.9363333582878113, 0.9380000233650208, 0.9399999976158142, 0.9416666626930237, 0.9426666498184204, 0.9434999823570251, 0.9440000057220459, 0.9446666836738586, 0.9461666941642761, 0.9466666579246521, 0.9466666579246521], "val_loss": [0.6442556977272034, 0.4302848279476166, 0.36013123393058777, 0.3226505219936371, 0.29792988300323486, 0.28007152676582336, 0.26614898443222046, 0.2545594871044159, 0.24438811838626862, 0.23533177375793457, 0.22730465233325958, 0.21999843418598175, 0.2133021056652069, 0.20725445449352264, 0.20164167881011963, 0.19654907286167145, 0.19180767238140106, 0.1873950958251953, 0.18333253264427185, 0.17960286140441895]}
modelllls/mnist_model_lr0.00018488_bs16_epochs20.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8421905040740967, 0.9212856888771057, 0.935619056224823, 0.9449523687362671, 0.9526190757751465, 0.9589999914169312, 0.9637143015861511, 0.9681904911994934, 0.9714285731315613, 0.9749523997306824, 0.9780476093292236, 0.980904757976532, 0.982952356338501, 0.9854285717010498, 0.9869999885559082, 0.9889523983001709, 0.9900952577590942, 0.9916190505027771, 0.9926190376281738, 0.9938571453094482], "loss": [0.624085009098053, 0.2937605679035187, 0.2385547161102295, 0.2021440714597702, 0.17460764944553375, 0.15260113775730133, 0.13453605771064758, 0.1194140762090683, 0.10657437145709991, 0.09546155482530594, 0.08571815490722656, 0.07710147649049759, 0.06939898431301117, 0.06245754286646843, 0.05617161840200424, 0.05058031156659126, 0.045462992042303085, 0.040753018110990524, 0.03648575395345688, 0.03268574923276901], "val_accuracy": [0.9083333611488342, 0.9223333597183228, 0.9308333396911621, 0.937166690826416, 0.940666675567627, 0.9443333148956299, 0.9471666812896729, 0.9484999775886536, 0.9496666789054871, 0.9509999752044678, 0.9526666402816772, 0.953499972820282, 0.9551666378974915, 0.9570000171661377, 0.9574999809265137, 0.9583333134651184, 0.9589999914169312, 0.9591666460037231, 0.9593333601951599, 0.9598333239555359], "val_loss": [0.33796584606170654, 0.2752002775669098, 0.24356946349143982, 0.22121267020702362, 0.2041047215461731, 0.1909978985786438, 0.18073242902755737, 0.17269550263881683, 0.1658238172531128, 0.16022087633609772, 0.1556253582239151, 0.15180127322673798, 0.14856596291065216, 0.1459316462278366, 0.14411607384681702, 0.1424834430217743, 0.1412276029586792, 0.14004585146903992, 0.13950148224830627, 0.13883531093597412]}
modelllls/mnist_model_lr0.00018488_bs32_epochs50.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.814380943775177, 0.91009521484375, 0.9239047765731812, 0.9338095188140869, 0.9412857294082642, 0.9470952153205872, 0.9528095126152039, 0.9573809504508972, 0.9611904621124268, 0.96490478515625, 0.9683809280395508, 0.9713809490203857, 0.9739047884941101, 0.9764285683631897, 0.9783809781074524, 0.9804762005805969, 0.982285737991333, 0.9836190342903137, 0.9853809475898743, 0.9866190552711487, 0.9881428480148315, 0.9895714521408081, 0.9907618761062622, 0.9921904802322388, 0.9930475950241089, 0.9937618970870972, 0.9944761991500854, 0.9950000047683716, 0.9957143068313599, 0.9961904883384705, 0.9969523549079895, 0.9974285960197449, 0.9977619051933289, 0.9980952143669128, 0.9984285831451416, 0.9985238313674927, 0.9988571405410767, 0.9989523887634277, 0.9991428852081299, 0.9993809461593628, 0.9994761943817139, 0.9995238184928894, 0.9996190667152405, 0.9996190667152405, 0.9997143149375916, 0.9998571276664734, 0.9999523758888245, 0.9999523758888245, 0.9999523758888245, 0.9999523758888245], "loss": [0.7590180039405823, 0.33915045857429504, 0.27809250354766846, 0.24132108688354492, 0.21367304027080536, 0.1915273517370224, 0.17289024591445923, 0.15692998468875885, 0.1431245654821396, 0.13086867332458496, 0.12001634389162064, 0.11028054356575012, 0.1014411598443985, 0.0934986025094986, 0.0862669125199318, 0.07966060191392899, 0.07366116344928741, 0.06815032660961151, 0.06307047605514526, 0.0583626814186573, 0.05402923375368118, 0.05002491548657417, 0.04625050351023674, 0.04280107468366623, 0.03955497965216637, 0.03653976693749428, 0.03372596949338913, 0.031135844066739082, 0.02867569960653782, 0.02641368843615055, 0.02432561293244362, 0.0223767701536417, 0.02055676467716694, 0.018896998837590218, 0.01732919178903103, 0.01589287258684635, 0.01456680428236723, 0.01333476323634386, 0.012170237489044666, 0.011098814196884632, 0.010117573663592339, 0.00920310989022255, 0.00836467556655407, 0.007583541329950094, 0.006852786988019943, 0.006199993193149567, 0.005590821150690317, 0.0050346702337265015, 0.004523452837020159, 0.00407120818272233], "val_accuracy": [0.8970000147819519, 0.9138333201408386, 0.9229999780654907, 0.9294999837875366, 0.934499979019165, 0.9386666417121887, 0.9411666393280029, 0.9434999823570251, 0.9458333253860474, 0.9490000009536743, 0.9496666789054871, 0.9511666893959045, 0.9521666765213013, 0.9524999856948853, 0.953000009059906, 0.9546666741371155, 0.9548333287239075, 0.9553333520889282, 0.9558333158493042, 0.9566666483879089, 0.9571666717529297, 0.9578333497047424, 0.9588333368301392, 0.9586666822433472, 0.9596666693687439, 0.9591666460037231, 0.9596666693687439, 0.9606666564941406, 0.9605000019073486, 0.9603333473205566, 0.9608333110809326, 0.9605000019073486, 0.9611666798591614, 0.9613333344459534, 0.9614999890327454, 0.9614999890327454, 0.9614999890327454, 0.9618333578109741, 0.9624999761581421, 0.9623333215713501, 0.9628333449363708, 0.9628333449363708, 0.9626666903495789, 0.9628333449363708, 0.9628333449363708, 0.9628333449363708, 0.9624999761581421, 0.9631666541099548, 0.9629999995231628, 0.9624999761581421], "val_loss": [0.3918256163597107, 0.3111613094806671, 0.2752871811389923, 0.2512550950050354, 0.23283681273460388, 0.2180117964744568, 0.20549900829792023, 0.19496962428092957, 0.18598458170890808, 0.17836081981658936, 0.17177048325538635, 0.16617825627326965, 0.1615336388349533, 0.15754972398281097, 0.15382175147533417, 0.1508948802947998, 0.14816659688949585, 0.14592379331588745, 0.1439117193222046, 0.1422235369682312, 0.140634223818779, 0.13934561610221863, 0.13825993239879608, 0.1375875622034073, 0.13653619587421417, 0.13619305193424225, 0.13575252890586853, 0.13542158901691437, 0.134892076253891, 0.13465511798858643, 0.13475480675697327, 0.1345711648464203, 0.13499610126018524, 0.13510215282440186, 0.13554057478904724, 0.13619166612625122, 0.13649266958236694, 0.1371026337146759, 0.1378442645072937, 0.1387535035610199, 0.13909773528575897, 0.14041750133037567, 0.14128662645816803, 0.14239592850208282, 0.14368204772472382, 0.14477072656154633, 0.14618156850337982, 0.14755840599536896, 0.14897774159908295, 0.15074068307876587]}
modelllls/mnist_model_lr0.00018488_bs512_epochs25.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.449571430683136, 0.7625714540481567, 0.8282856941223145, 0.859333336353302, 0.8758095502853394, 0.887666642665863, 0.895380973815918, 0.9024761915206909, 0.9072856903076172, 0.9120000004768372, 0.9159047603607178, 0.9190000295639038, 0.9219047427177429, 0.9246666431427002, 0.9273333549499512, 0.9290476441383362, 0.9309523701667786, 0.9324761629104614, 0.9344285726547241, 0.9365237951278687, 0.9381904602050781, 0.9399047493934631, 0.9415714144706726, 0.9430952668190002, 0.9442856907844543], "loss": [1.9066640138626099, 1.1675059795379639, 0.7902200818061829, 0.6173645853996277, 0.5225685238838196, 0.46268558502197266, 0.4210914671421051, 0.38995301723480225, 0.36545494198799133, 0.34539148211479187, 0.3285205662250519, 0.314032644033432, 0.30139586329460144, 0.290176123380661, 0.2800813615322113, 0.2708778977394104, 0.26243144273757935, 0.25458604097366333, 0.2473115175962448, 0.24048905074596405, 0.23406508564949036, 0.2280030995607376, 0.222275510430336, 0.2168055921792984, 0.2115902453660965], "val_accuracy": [0.7013333439826965, 0.8008333444595337, 0.8446666598320007, 0.8650000095367432, 0.8805000185966492, 0.890666663646698, 0.8971666693687439, 0.9001666903495789, 0.9045000076293945, 0.9081666469573975, 0.9111666679382324, 0.9135000109672546, 0.9161666631698608, 0.9176666736602783, 0.9208333492279053, 0.9231666922569275, 0.9240000247955322, 0.9253333210945129, 0.9261666536331177, 0.9281666874885559, 0.9301666617393494, 0.9313333630561829, 0.9316666722297668, 0.9325000047683716, 0.934166669845581], "val_loss": [1.4602376222610474, 0.9244378805160522, 0.6873331665992737, 0.5665132403373718, 0.4946121275424957, 0.44704943895339966, 0.41280460357666016, 0.38687124848365784, 0.3662887513637543, 0.34949052333831787, 0.33541178703308105, 0.32339832186698914, 0.31289708614349365, 0.3036049008369446, 0.2952984571456909, 0.28782033920288086, 0.28096234798431396, 0.2746705710887909, 0.2689290940761566, 0.26356279850006104, 0.2585222125053406, 0.25382062792778015, 0.24937593936920166, 0.24521291255950928, 0.24128256738185883]}
modelllls/mnist_model_lr0.00018488_bs8_epochs15.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8628095388412476, 0.9281904697418213, 0.9435238242149353, 0.9546190500259399, 0.9629999995231628, 0.9680952429771423, 0.9728095531463623, 0.9775238037109375, 0.9812856912612915, 0.9842857122421265, 0.9868571162223816, 0.9895238280296326, 0.9918095469474792, 0.9933809638023376, 0.994857132434845], "loss": [0.5292407870292664, 0.2638165354728699, 0.2060765027999878, 0.16723722219467163, 0.13898874819278717, 0.1169816181063652, 0.0992719754576683, 0.08472466468811035, 0.07266892492771149, 0.06255932152271271, 0.053925443440675735, 0.04646848514676094, 0.03995126858353615, 0.03425632789731026, 0.02925233356654644], "val_accuracy": [0.9190000295639038, 0.9331666827201843, 0.9386666417121887, 0.9449999928474426, 0.9486666917800903, 0.9509999752044678, 0.953166663646698, 0.9558333158493042, 0.9573333263397217, 0.9589999914169312, 0.9603333473205566, 0.9618333578109741, 0.9621666669845581, 0.9620000123977661, 0.9631666541099548], "val_loss": [0.30637267231941223, 0.24933908879756927, 0.21569883823394775, 0.19265319406986237, 0.17579461634159088, 0.16331157088279724, 0.15426303446292877, 0.14736244082450867, 0.14161673188209534, 0.1375967562198639, 0.134454146027565, 0.13223332166671753, 0.1307370811700821, 0.12992383539676666, 0.12972982227802277]}
modelllls/mnist_model_lr0.00018488_bs8_epochs35.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8582857251167297, 0.9268571138381958, 0.9423333406448364, 0.9538571238517761, 0.9618571400642395, 0.9677143096923828, 0.9728095531463623, 0.9769523739814758, 0.9813809394836426, 0.9841904640197754, 0.9868095517158508, 0.9889047741889954, 0.9912857413291931, 0.9930475950241089, 0.9941428303718567, 0.9955238103866577, 0.9965237975120544, 0.9975714087486267, 0.998285710811615, 0.9989047646522522, 0.9992856979370117, 0.9994761943817139, 0.9997143149375916, 0.9997143149375916, 0.9998571276664734, 0.9999047517776489, 0.9999047517776489, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], "loss": [0.5400712490081787, 0.26421281695365906, 0.20628301799297333, 0.1684151440858841, 0.1407138556241989, 0.11915462464094162, 0.10168776661157608, 0.08726436644792557, 0.0753064975142479, 0.06500833481550217, 0.056174326688051224, 0.0484609417617321, 0.0417666994035244, 0.035963527858257294, 0.030794134363532066, 0.026294779032468796, 0.02234579622745514, 0.018894318491220474, 0.015807760879397392, 0.013237985782325268, 0.010971116833388805, 0.009116428904235363, 0.007494012825191021, 0.006106853019446135, 0.004969690460711718, 0.004013087600469589, 0.003213193267583847, 0.0025643762201070786, 0.002040103543549776, 0.0016070017591118813, 0.0012540979078039527, 0.00097228167578578, 0.0007529121357947588, 0.0005808981950394809, 0.00043963678763248026], "val_accuracy": [0.9171666502952576, 0.9308333396911621, 0.9386666417121887, 0.9436666369438171, 0.9474999904632568, 0.9488333463668823, 0.9514999985694885, 0.95333331823349, 0.9553333520889282, 0.9566666483879089, 0.9585000276565552, 0.9596666693687439, 0.9608333110809326, 0.9613333344459534, 0.9613333344459534, 0.9621666669845581, 0.9623333215713501, 0.9616666436195374, 0.9628333449363708, 0.9631666541099548, 0.9636666774749756, 0.9636666774749756, 0.9636666774749756, 0.9636666774749756, 0.9635000228881836, 0.9636666774749756, 0.9636666774749756, 0.9643333554267883, 0.9635000228881836, 0.9636666774749756, 0.9639999866485596, 0.9633333086967468, 0.9638333320617676, 0.9639999866485596, 0.9648333191871643], "val_loss": [0.3055180013179779, 0.24745190143585205, 0.21530801057815552, 0.19366851449012756, 0.17795135080814362, 0.16653341054916382, 0.15782895684242249, 0.151212677359581, 0.14600886404514313, 0.14181280136108398, 0.13881626725196838, 0.1359403431415558, 0.13478189706802368, 0.1337219774723053, 0.13284049928188324, 0.1332380771636963, 0.1336940973997116, 0.13528341054916382, 0.13600106537342072, 0.13773703575134277, 0.1397230327129364, 0.14225821197032928, 0.14484846591949463, 0.14764206111431122, 0.15102869272232056, 0.15378376841545105, 0.15795861184597015, 0.16145426034927368, 0.16556817293167114, 0.16935338079929352, 0.17271903157234192, 0.17735490202903748, 0.18125343322753906, 0.18582870066165924, 0.1901063174009323]}
modelllls/mnist_model_lr0.00022186_bs16_epochs40.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8517143130302429, 0.9226666688919067, 0.9392856955528259, 0.9488095045089722, 0.9573333263397217, 0.9636190533638, 0.9683333039283752, 0.9722856879234314, 0.9760000109672546, 0.9795238375663757, 0.9826666712760925, 0.9850476384162903, 0.9874285459518433, 0.9892857074737549, 0.9909999966621399, 0.9924286007881165, 0.9938095211982727, 0.9953809380531311, 0.9964761734008789, 0.9972380995750427, 0.997952401638031, 0.998285710811615, 0.9988095164299011, 0.9990952610969543, 0.9993333220481873, 0.9995714426040649, 0.999666690826416, 0.9998095035552979, 0.9999047517776489, 0.9999523758888245, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], "loss": [0.5792783498764038, 0.27830153703689575, 0.22199365496635437, 0.18508736789226532, 0.15775321424007416, 0.13612212240695953, 0.11843757331371307, 0.10353705286979675, 0.09091076999902725, 0.08000309765338898, 0.07054581493139267, 0.062263123691082, 0.05487179756164551, 0.048367321491241455, 0.04250946268439293, 0.03732150048017502, 0.03278826177120209, 0.028659189119935036, 0.025052016600966454, 0.021816521883010864, 0.01894371025264263, 0.016416126862168312, 0.014164028689265251, 0.012111787684261799, 0.010392428375780582, 0.008838224224746227, 0.007485313806682825, 0.006362775340676308, 0.00531487911939621, 0.004447117913514376, 0.0036841987166553736, 0.0030620198231190443, 0.0025202862452715635, 0.002088315552100539, 0.0017112703062593937, 0.00139518768992275, 0.001133842975832522, 0.0009249710128642619, 0.000750261009670794, 0.0006003277376294136], "val_accuracy": [0.9129999876022339, 0.9278333187103271, 0.9359999895095825, 0.9401666522026062, 0.9448333382606506, 0.9470000267028809, 0.9491666555404663, 0.9524999856948853, 0.9546666741371155, 0.956333339214325, 0.9568333625793457, 0.9580000042915344, 0.9580000042915344, 0.9593333601951599, 0.9595000147819519, 0.9593333601951599, 0.9605000019073486, 0.9603333473205566, 0.9605000019073486, 0.9611666798591614, 0.9614999890327454, 0.9613333344459534, 0.9616666436195374, 0.9621666669845581, 0.9616666436195374, 0.9621666669845581, 0.9624999761581421, 0.9631666541099548, 0.9636666774749756, 0.9633333086967468, 0.9636666774749756, 0.9636666774749756, 0.9631666541099548, 0.9633333086967468, 0.9638333320617676, 0.9635000228881836, 0.9639999866485596, 0.9638333320617676, 0.9639999866485596, 0.9638333320617676], "val_loss": [0.31783610582351685, 0.2603831887245178, 0.22884546220302582, 0.20695728063583374, 0.19069355726242065, 0.1782636046409607, 0.16858620941638947, 0.16099666059017181, 0.15489663183689117, 0.15009863674640656, 0.14606310427188873, 0.14335446059703827, 0.14110851287841797, 0.13947957754135132, 0.13853894174098969, 0.138020858168602, 0.13801555335521698, 0.13820800185203552, 0.13879646360874176, 0.13956494629383087, 0.14103920757770538, 0.1414864957332611, 0.14317382872104645, 0.14439436793327332, 0.14667178690433502, 0.1487806737422943, 0.15086188912391663, 0.15354420244693756, 0.15618960559368134, 0.15866315364837646, 0.161990687251091, 0.16485276818275452, 0.1687478870153427, 0.17224286496639252, 0.1749694049358368, 0.17883005738258362, 0.18228071928024292, 0.18647944927215576, 0.1898214966058731, 0.1939411759376526]}
modelllls/mnist_model_lr0.00022186_bs256_epochs20.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.6157618761062622, 0.8513809442520142, 0.8866666555404663, 0.9008095264434814, 0.9108571410179138, 0.9176666736602783, 0.9223809242248535, 0.9268571138381958, 0.930904746055603, 0.9350476264953613, 0.9383809566497803, 0.941428542137146, 0.9432857036590576, 0.9459523558616638, 0.9477618932723999, 0.9501428604125977, 0.9519047737121582, 0.9536666870117188, 0.9561428427696228, 0.9574285745620728], "loss": [1.5186693668365479, 0.6643567681312561, 0.4678131937980652, 0.3898012638092041, 0.3454097509384155, 0.3151625394821167, 0.2926240563392639, 0.27446508407592773, 0.25906985998153687, 0.24550651013851166, 0.23345008492469788, 0.22256433963775635, 0.21264150738716125, 0.20344847440719604, 0.19497935473918915, 0.18714846670627594, 0.1798677295446396, 0.1730678826570511, 0.1666630655527115, 0.16057263314723969], "val_accuracy": [0.8108333349227905, 0.8755000233650208, 0.8924999833106995, 0.9021666646003723, 0.9085000157356262, 0.9136666655540466, 0.9179999828338623, 0.921833336353302, 0.9238333106040955, 0.9263333082199097, 0.9296666383743286, 0.9316666722297668, 0.9334999918937683, 0.9355000257492065, 0.937166690826416, 0.9396666884422302, 0.940833330154419, 0.9426666498184204, 0.9424999952316284, 0.9424999952316284], "val_loss": [0.8723005652427673, 0.534093976020813, 0.42612987756729126, 0.3724062442779541, 0.33901524543762207, 0.31588178873062134, 0.2983688414096832, 0.28440478444099426, 0.2729296386241913, 0.2630101144313812, 0.25429031252861023, 0.24646908044815063, 0.2393907606601715, 0.23285998404026031, 0.226918563246727, 0.22140982747077942, 0.21629415452480316, 0.21165230870246887, 0.20729675889015198, 0.20325826108455658]}
modelllls/mnist_model_lr0.00022186_bs32_epochs10.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8277142643928528, 0.9136666655540466, 0.9279047846794128, 0.9370476007461548, 0.9449999928474426, 0.9515237808227539, 0.9558571577072144, 0.9603333473205566, 0.9644285440444946, 0.9679999947547913], "loss": [0.6937392354011536, 0.32147032022476196, 0.26430952548980713, 0.22823381423950195, 0.2009693831205368, 0.178932785987854, 0.16027821600437164, 0.14426225423812866, 0.13044273853302002, 0.11840778589248657], "val_accuracy": [0.9001666903495789, 0.9160000085830688, 0.9235000014305115, 0.9303333163261414, 0.934333324432373, 0.9384999871253967, 0.9416666626930237, 0.9433333277702332, 0.9448333382606506, 0.9478333592414856], "val_loss": [0.3713114857673645, 0.30012819170951843, 0.26754260063171387, 0.24576792120933533, 0.22817696630954742, 0.21405045688152313, 0.20212972164154053, 0.1919022798538208, 0.18396741151809692, 0.17708753049373627]}
modelllls/mnist_model_lr0.00022186_bs512_epochs50.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.49895238876342773, 0.7950000166893005, 0.8505714535713196, 0.8761428594589233, 0.8883809447288513, 0.8976666927337646, 0.9039523601531982, 0.9091428518295288, 0.9140952229499817, 0.9173333048820496, 0.9209047555923462, 0.9240952134132385, 0.9265714287757874, 0.9290952086448669, 0.9316666722297668, 0.9341428279876709, 0.9362381100654602, 0.9384762048721313, 0.9398095011711121, 0.9417619109153748, 0.9430952668190002, 0.9446190595626831, 0.9461904764175415, 0.9475714564323425, 0.9489523768424988, 0.9501904845237732, 0.9515237808227539, 0.9529047608375549, 0.9539999961853027, 0.9549523591995239, 0.9562380909919739, 0.9574285745620728, 0.9585714340209961, 0.9596666693687439, 0.9610000252723694, 0.9617142677307129, 0.9625714421272278, 0.9636190533638, 0.9646666646003723, 0.9655238389968872, 0.9660476446151733, 0.9668095111846924, 0.9675714373588562, 0.9682857394218445, 0.9688571691513062, 0.9698095321655273, 0.9704762101173401, 0.9716190695762634, 0.9721904993057251, 0.9726666808128357], "loss": [1.8217341899871826, 1.0325368642807007, 0.6852537989616394, 0.5402390360832214, 0.46347665786743164, 0.4149339199066162, 0.38099706172943115, 0.35539624094963074, 0.33500054478645325, 0.31808483600616455, 0.3036347031593323, 0.29099738597869873, 0.27967625856399536, 0.2693712115287781, 0.25987598299980164, 0.2510904371738434, 0.2428920418024063, 0.23519282042980194, 0.22795186936855316, 0.2211054265499115, 0.21461769938468933, 0.20846232771873474, 0.20260892808437347, 0.1970302015542984, 0.19171519577503204, 0.18664737045764923, 0.1817803829908371, 0.17709985375404358, 0.17261357605457306, 0.16830173134803772, 0.1641436070203781, 0.1601267009973526, 0.15624985098838806, 0.15252579748630524, 0.14890962839126587, 0.14542560279369354, 0.1420528143644333, 0.13878294825553894, 0.13562768697738647, 0.1325836032629013, 0.12961724400520325, 0.12674063444137573, 0.12395045161247253, 0.12124845385551453, 0.11861134320497513, 0.1160503625869751, 0.11356832087039948, 0.1111542135477066, 0.10880053788423538, 0.10652726143598557], "val_accuracy": [0.7549999952316284, 0.828499972820282, 0.862500011920929, 0.8791666626930237, 0.8898333311080933, 0.8978333473205566, 0.9014999866485596, 0.9071666598320007, 0.9111666679382324, 0.9128333330154419, 0.9168333411216736, 0.9198333621025085, 0.9213333129882812, 0.9241666793823242, 0.9265000224113464, 0.9284999966621399, 0.9298333525657654, 0.9315000176429749, 0.9323333501815796, 0.9330000281333923, 0.934166669845581, 0.9358333349227905, 0.9365000128746033, 0.9368333220481873, 0.9383333325386047, 0.9393333196640015, 0.9403333067893982, 0.9416666626930237, 0.9418333172798157, 0.9428333044052124, 0.9433333277702332, 0.9446666836738586, 0.9455000162124634, 0.9459999799728394, 0.9465000033378601, 0.9468333125114441, 0.9474999904632568, 0.9478333592414856, 0.9484999775886536, 0.9490000009536743, 0.9491666555404663, 0.9491666555404663, 0.9491666555404663, 0.9493333101272583, 0.9496666789054871, 0.949999988079071, 0.949999988079071, 0.9505000114440918, 0.9505000114440918, 0.9508333206176758], "val_loss": [1.3200490474700928, 0.7993937134742737, 0.5954443216323853, 0.4980837404727936, 0.44038957357406616, 0.4020236134529114, 0.3743106722831726, 0.35311904549598694, 0.3361597955226898, 0.322103351354599, 0.3102109730243683, 0.29988518357276917, 0.2907692790031433, 0.28253844380378723, 0.27508553862571716, 0.26827651262283325, 0.26199793815612793, 0.25613823533058167, 0.2506789267063141, 0.24560067057609558, 0.24080419540405273, 0.2362835854291916, 0.23197981715202332, 0.22791028022766113, 0.22407804429531097, 0.22039790451526642, 0.21687300503253937, 0.21352681517601013, 0.21035976707935333, 0.20732010900974274, 0.2044474482536316, 0.2016679048538208, 0.19906306266784668, 0.19653138518333435, 0.19409403204917908, 0.19177450239658356, 0.18951068818569183, 0.1873522400856018, 0.18529097735881805, 0.18328173458576202, 0.1813773661851883, 0.17954187095165253, 0.17780354619026184, 0.17611689865589142, 0.17450520396232605, 0.17294806241989136, 0.1714312583208084, 0.16997696459293365, 0.1686045378446579, 0.16726334393024445]}
modelllls/mnist_model_lr0.00022186_bs64_epochs15.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.7783809304237366, 0.9034285545349121, 0.9189524054527283, 0.9294762015342712, 0.937666654586792, 0.9434285759925842, 0.9489047527313232, 0.953000009059906, 0.9565714001655579, 0.9598095417022705, 0.9631428718566895, 0.9657618999481201, 0.9688571691513062, 0.9716190695762634, 0.9739523530006409], "loss": [0.8995290398597717, 0.37242406606674194, 0.29914391040802, 0.26014187932014465, 0.2320215106010437, 0.20967815816402435, 0.1911042183637619, 0.1749556064605713, 0.16093455255031586, 0.14851441979408264, 0.13739901781082153, 0.1273764818906784, 0.11829939484596252, 0.10998272150754929, 0.1024446040391922], "val_accuracy": [0.8884999752044678, 0.9108333587646484, 0.9190000295639038, 0.9261666536331177, 0.9306666851043701, 0.934333324432373, 0.9366666674613953, 0.9394999742507935, 0.9416666626930237, 0.9441666603088379, 0.9456666707992554, 0.9466666579246521, 0.9484999775886536, 0.949833333492279, 0.9514999985694885], "val_loss": [0.44345712661743164, 0.33244287967681885, 0.29113897681236267, 0.26617392897605896, 0.2476314753293991, 0.23277539014816284, 0.21985983848571777, 0.20860987901687622, 0.19913004338741302, 0.19068296253681183, 0.18347056210041046, 0.1770278364419937, 0.1712980568408966, 0.16624176502227783, 0.16177645325660706]}
modelllls/mnist_model_lr0.00022186_bs64_epochs35.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.7875714302062988, 0.9030476212501526, 0.920714259147644, 0.9319047331809998, 0.9396666884422302, 0.9459999799728394, 0.9509047865867615, 0.9554761648178101, 0.959761917591095, 0.9629523754119873, 0.9656190276145935, 0.9685714244842529, 0.9705238342285156, 0.9727619290351868, 0.9744762182235718, 0.9762856960296631, 0.9777619242668152, 0.9793809652328491, 0.9810476303100586, 0.982285737991333, 0.9834761619567871, 0.9851904511451721, 0.9864761829376221, 0.9877142906188965, 0.9885714054107666, 0.989380955696106, 0.9903809428215027, 0.9918095469474792, 0.9923333525657654, 0.9929999709129333, 0.9937142729759216, 0.994523823261261, 0.9952380657196045, 0.9958571195602417, 0.9961904883384705], "loss": [0.8893928527832031, 0.37396544218063354, 0.29616716504096985, 0.2534836232662201, 0.22372597455978394, 0.20077316462993622, 0.1821592152118683, 0.16655977070331573, 0.1531723439693451, 0.14149242639541626, 0.1311202347278595, 0.12184222787618637, 0.11353103816509247, 0.10597288608551025, 0.09905944019556046, 0.09274091571569443, 0.08684312552213669, 0.08144955337047577, 0.07642418891191483, 0.07169564068317413, 0.06731018424034119, 0.06320292502641678, 0.059319689869880676, 0.0556771457195282, 0.05224272236227989, 0.049043118953704834, 0.04601381719112396, 0.04316358268260956, 0.0404699444770813, 0.0379280187189579, 0.03557084873318672, 0.03332231566309929, 0.031215021386742592, 0.02924167551100254, 0.027372291311621666], "val_accuracy": [0.8868333101272583, 0.9081666469573975, 0.9201666712760925, 0.9263333082199097, 0.9319999814033508, 0.9351666569709778, 0.9388333559036255, 0.9401666522026062, 0.9424999952316284, 0.9441666603088379, 0.9455000162124634, 0.9471666812896729, 0.9484999775886536, 0.949833333492279, 0.9516666531562805, 0.953000009059906, 0.953499972820282, 0.9541666507720947, 0.9551666378974915, 0.9555000066757202, 0.956166684627533, 0.9568333625793457, 0.9573333263397217, 0.9574999809265137, 0.9588333368301392, 0.9593333601951599, 0.9596666693687439, 0.9603333473205566, 0.9605000019073486, 0.9605000019073486, 0.9608333110809326, 0.9606666564941406, 0.9614999890327454, 0.9614999890327454, 0.9616666436195374], "val_loss": [0.4488137662410736, 0.33418214321136475, 0.2876074016094208, 0.2595004439353943, 0.2394486665725708, 0.22432418167591095, 0.21205461025238037, 0.20188933610916138, 0.1933508962392807, 0.18612845242023468, 0.17979508638381958, 0.1742597073316574, 0.1695425659418106, 0.165202796459198, 0.1616869866847992, 0.158354714512825, 0.15549598634243011, 0.1528751254081726, 0.15063714981079102, 0.14854979515075684, 0.1466236412525177, 0.14508561789989471, 0.1435956060886383, 0.14222171902656555, 0.141152024269104, 0.13994471728801727, 0.13909362256526947, 0.13821721076965332, 0.13732145726680756, 0.13670921325683594, 0.13607853651046753, 0.1357831060886383, 0.13536597788333893, 0.13505712151527405, 0.13484936952590942]}
modelllls/mnist_model_lr0.00026623_bs256_epochs35.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.654285728931427, 0.8655714392662048, 0.8948095440864563, 0.9086666703224182, 0.916857123374939, 0.9238571524620056, 0.9290000200271606, 0.9327142834663391, 0.9370476007461548, 0.9395714402198792, 0.9429047703742981, 0.9456190466880798, 0.9482380747795105, 0.949999988079071, 0.9523333311080933, 0.9542381167411804, 0.9560475945472717, 0.9581905007362366, 0.9603333473205566, 0.962238073348999, 0.9644285440444946, 0.9657142758369446, 0.9665238261222839, 0.9684761762619019, 0.9695714116096497, 0.9708095192909241, 0.972000002861023, 0.9729047417640686, 0.9739047884941101, 0.9750476479530334, 0.9764285683631897, 0.977142870426178, 0.9784761667251587, 0.979190468788147, 0.9803809523582458], "loss": [1.4114173650741577, 0.5766753554344177, 0.4187638461589813, 0.3536304533481598, 0.3152589797973633, 0.2883296012878418, 0.2674929201602936, 0.2503689229488373, 0.23581120371818542, 0.22312632203102112, 0.21178974211215973, 0.20155729353427887, 0.19222243130207062, 0.18353527784347534, 0.1754324585199356, 0.1678905040025711, 0.1608087122440338, 0.1541127860546112, 0.14785213768482208, 0.14195017516613007, 0.1363939344882965, 0.13114215433597565, 0.1261409968137741, 0.12140757590532303, 0.11689069122076035, 0.11257629096508026, 0.10845445096492767, 0.10455170273780823, 0.10082005709409714, 0.09725376963615417, 0.09384264796972275, 0.09057163447141647, 0.08744914829730988, 0.0844622552394867, 0.0815882533788681], "val_accuracy": [0.8324999809265137, 0.8866666555404663, 0.9023333191871643, 0.9110000133514404, 0.9168333411216736, 0.9196666479110718, 0.9238333106040955, 0.9254999756813049, 0.9283333420753479, 0.9319999814033508, 0.9338333606719971, 0.9350000023841858, 0.9369999766349792, 0.937833309173584, 0.9390000104904175, 0.9403333067893982, 0.9418333172798157, 0.9433333277702332, 0.9440000057220459, 0.9446666836738586, 0.9459999799728394, 0.9473333358764648, 0.9480000138282776, 0.9488333463668823, 0.9496666789054871, 0.950166642665863, 0.9505000114440918, 0.9505000114440918, 0.9514999985694885, 0.9523333311080933, 0.953000009059906, 0.9536666870117188, 0.9543333053588867, 0.9548333287239075, 0.9548333287239075], "val_loss": [0.7592775225639343, 0.4775117039680481, 0.3888521194458008, 0.34416288137435913, 0.3160642683506012, 0.2959980368614197, 0.2804677486419678, 0.26790669560432434, 0.2572300434112549, 0.24790869653224945, 0.23976212739944458, 0.23246490955352783, 0.22564680874347687, 0.21935392916202545, 0.21348370611667633, 0.20812192559242249, 0.2030317187309265, 0.19823095202445984, 0.19378644227981567, 0.1897050142288208, 0.18590547144412994, 0.1823427677154541, 0.17900441586971283, 0.17588812112808228, 0.17297011613845825, 0.17023004591464996, 0.16773366928100586, 0.1654263585805893, 0.16324637830257416, 0.1612393856048584, 0.1592298001050949, 0.15741318464279175, 0.15566809475421906, 0.154006227850914, 0.15249067544937134]}
modelllls/mnist_model_lr0.00026623_bs64_epochs20.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.7963333129882812, 0.9090476036071777, 0.9262857437133789, 0.9363333582878113, 0.9430000185966492, 0.9496190547943115, 0.9548571705818176, 0.9589999914169312, 0.9620952606201172, 0.9658095240592957, 0.9691904783248901, 0.9709523916244507, 0.9734761714935303, 0.975523829460144, 0.9776190519332886, 0.9800952672958374, 0.9818094968795776, 0.9833333492279053, 0.984666645526886, 0.9859047532081604], "loss": [0.8342700600624084, 0.345479279756546, 0.2759319245815277, 0.23621368408203125, 0.2080748975276947, 0.1860864758491516, 0.16808894276618958, 0.15287865698337555, 0.13983096182346344, 0.12844260036945343, 0.1183866485953331, 0.10941778123378754, 0.10132025182247162, 0.09396733343601227, 0.08724377304315567, 0.08104827255010605, 0.07537167519330978, 0.07010520994663239, 0.06526296585798264, 0.06077606976032257], "val_accuracy": [0.8951666951179504, 0.9138333201408386, 0.9233333468437195, 0.9315000176429749, 0.9355000257492065, 0.937833309173584, 0.9399999976158142, 0.9421666860580444, 0.9453333616256714, 0.9468333125114441, 0.9483333230018616, 0.9488333463668823, 0.9505000114440918, 0.9520000219345093, 0.9526666402816772, 0.9543333053588867, 0.9546666741371155, 0.9559999704360962, 0.9573333263397217, 0.9580000042915344], "val_loss": [0.4151574671268463, 0.3155776858329773, 0.2735480070114136, 0.24755194783210754, 0.228932186961174, 0.2144746482372284, 0.2025931030511856, 0.19273032248020172, 0.18435363471508026, 0.17737305164337158, 0.17131726443767548, 0.1661306619644165, 0.16191281378269196, 0.1581963747739792, 0.15492713451385498, 0.15197132527828217, 0.14933989942073822, 0.14708445966243744, 0.14532284438610077, 0.14368408918380737]}
modelllls/mnist_model_lr0.00031948_bs16_epochs20.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8685238361358643, 0.9328571557998657, 0.9479047656059265, 0.9590476155281067, 0.9658571481704712, 0.9710952639579773, 0.9769047498703003, 0.9813809394836426, 0.9845238327980042, 0.9878095388412476, 0.9906666874885559, 0.9924286007881165, 0.9945714473724365, 0.9958571195602417, 0.9972380995750427, 0.9980952143669128, 0.9986666440963745, 0.9991428852081299, 0.9995238184928894, 0.9998095035552979], "loss": [0.4973120391368866, 0.24332191050052643, 0.18906889855861664, 0.1528116911649704, 0.1256340742111206, 0.10469701886177063, 0.08772358298301697, 0.07390853017568588, 0.062324609607458115, 0.052565209567546844, 0.044332105666399, 0.03718363866209984, 0.031050026416778564, 0.025665273889899254, 0.021232938393950462, 0.017293553799390793, 0.014066528528928757, 0.011358038522303104, 0.008968375623226166, 0.007150322198867798], "val_accuracy": [0.9196666479110718, 0.9333333373069763, 0.9399999976158142, 0.9446666836738586, 0.9480000138282776, 0.9523333311080933, 0.9538333415985107, 0.9558333158493042, 0.9576666951179504, 0.9578333497047424, 0.9588333368301392, 0.9596666693687439, 0.9613333344459534, 0.9618333578109741, 0.9621666669845581, 0.9629999995231628, 0.9633333086967468, 0.9631666541099548, 0.9635000228881836, 0.9641666412353516], "val_loss": [0.28831878304481506, 0.2372625470161438, 0.20627310872077942, 0.18697383999824524, 0.17371195554733276, 0.164062038064003, 0.15604180097579956, 0.15100689232349396, 0.1476237028837204, 0.14491091668605804, 0.14298582077026367, 0.14270921051502228, 0.14201298356056213, 0.1423911601305008, 0.1437617838382721, 0.14503797888755798, 0.1474781334400177, 0.15004128217697144, 0.1526680588722229, 0.155732661485672]}
modelllls/mnist_model_lr0.00031948_bs256_epochs20.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.6637619137763977, 0.8710952401161194, 0.9000476002693176, 0.9143333435058594, 0.9221904873847961, 0.9287142753601074, 0.9341428279876709, 0.9381904602050781, 0.9412857294082642, 0.9451904892921448, 0.9480476379394531, 0.9517619013786316, 0.9543809294700623, 0.9565238356590271, 0.9589523673057556, 0.961571455001831, 0.9633333086967468, 0.9650952219963074, 0.966952383518219, 0.9685714244842529], "loss": [1.3151458501815796, 0.5211515426635742, 0.38734108209609985, 0.32944944500923157, 0.29393893480300903, 0.26793065667152405, 0.24716521799564362, 0.22989153861999512, 0.21497991681098938, 0.20170095562934875, 0.18977689743041992, 0.17901453375816345, 0.16932140290737152, 0.16047929227352142, 0.15238894522190094, 0.14495445787906647, 0.13804440200328827, 0.1316264122724533, 0.12566021084785461, 0.12009059637784958], "val_accuracy": [0.8461666703224182, 0.8943333625793457, 0.9078333377838135, 0.9163333177566528, 0.922166645526886, 0.9271666407585144, 0.9315000176429749, 0.9330000281333923, 0.9353333115577698, 0.937166690826416, 0.9391666650772095, 0.940666675567627, 0.9423333406448364, 0.9431666731834412, 0.9451666474342346, 0.9458333253860474, 0.9463333487510681, 0.9466666579246521, 0.9470000267028809, 0.9468333125114441], "val_loss": [0.6601018309593201, 0.4311028718948364, 0.35667508840560913, 0.31806936860084534, 0.2929242253303528, 0.2745056748390198, 0.2599843144416809, 0.2478073537349701, 0.2373068779706955, 0.22805602848529816, 0.21976743638515472, 0.21261876821517944, 0.20615576207637787, 0.20034478604793549, 0.19509591162204742, 0.19026614725589752, 0.18594951927661896, 0.18205980956554413, 0.1784721463918686, 0.1751617044210434]}
modelllls/mnist_model_lr0.00031948_bs32_epochs50.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8491904735565186, 0.9258095026016235, 0.9403333067893982, 0.9501428604125977, 0.95804762840271, 0.9637143015861511, 0.9681428670883179, 0.9724761843681335, 0.9764761924743652, 0.9792380928993225, 0.9818094968795776, 0.9843809604644775, 0.9868095517158508, 0.9888095259666443, 0.9905238151550293, 0.9921904802322388, 0.9938095211982727, 0.9946666955947876, 0.9959523677825928, 0.9968571662902832, 0.9973809719085693, 0.9980000257492065, 0.9985238313674927, 0.9989523887634277, 0.9992380738258362, 0.9995714426040649, 0.9997618794441223, 0.9998095035552979, 0.9999047517776489, 0.9999523758888245, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], "loss": [0.5992969274520874, 0.2730400562286377, 0.2168898582458496, 0.18148460984230042, 0.1556074172258377, 0.13516578078269958, 0.11845148354768753, 0.10408050566911697, 0.09175489097833633, 0.08119096606969833, 0.07187824696302414, 0.06363188475370407, 0.05632046237587929, 0.04981519281864166, 0.043957918882369995, 0.03873848915100098, 0.03407617658376694, 0.02997004985809326, 0.026227230206131935, 0.022981951013207436, 0.020035864785313606, 0.017425810918211937, 0.015128039754927158, 0.013001126237213612, 0.01121584139764309, 0.009673485532402992, 0.008296758867800236, 0.007039358373731375, 0.005961415357887745, 0.005055563990026712, 0.0042662061750888824, 0.003606230951845646, 0.003039770293980837, 0.0025562739465385675, 0.002148205414414406, 0.0018004028825089335, 0.001507975859567523, 0.0012607623357325792, 0.0010507102124392986, 0.000870620075147599, 0.0007257201941683888, 0.0006003401358611882, 0.0004970908048562706, 0.00041047122795134783, 0.0003377183747943491, 0.00027822295669466257, 0.00023016180784907192, 0.0001870474952738732, 0.00015302012616302818, 0.0001255183742614463], "val_accuracy": [0.9143333435058594, 0.9309999942779541, 0.9363333582878113, 0.9386666417121887, 0.9434999823570251, 0.9468333125114441, 0.9490000009536743, 0.9508333206176758, 0.9520000219345093, 0.9524999856948853, 0.953166663646698, 0.9541666507720947, 0.9551666378974915, 0.9556666612625122, 0.9568333625793457, 0.9574999809265137, 0.9591666460037231, 0.9598333239555359, 0.9596666693687439, 0.9606666564941406, 0.9601666927337646, 0.9606666564941406, 0.9618333578109741, 0.9616666436195374, 0.9614999890327454, 0.9624999761581421, 0.9629999995231628, 0.9621666669845581, 0.9623333215713501, 0.9624999761581421, 0.9624999761581421, 0.9628333449363708, 0.9629999995231628, 0.9624999761581421, 0.9626666903495789, 0.9623333215713501, 0.9620000123977661, 0.9620000123977661, 0.9620000123977661, 0.9620000123977661, 0.9624999761581421, 0.9628333449363708, 0.9628333449363708, 0.9633333086967468, 0.9631666541099548, 0.9631666541099548, 0.9635000228881836, 0.9638333320617676, 0.9638333320617676, 0.9643333554267883], "val_loss": [0.31457528471946716, 0.25367090106010437, 0.22413569688796997, 0.20542970299720764, 0.191463440656662, 0.1805219054222107, 0.17175093293190002, 0.16478823125362396, 0.1590368151664734, 0.15451198816299438, 0.15052644908428192, 0.14728118479251862, 0.14455369114875793, 0.14293797314167023, 0.14162971079349518, 0.1401890218257904, 0.13979578018188477, 0.13916221261024475, 0.13977915048599243, 0.1397670954465866, 0.140360489487648, 0.14123032987117767, 0.14223065972328186, 0.14340804517269135, 0.14471344649791718, 0.14686889946460724, 0.14829863607883453, 0.15027141571044922, 0.15213267505168915, 0.15394876897335052, 0.15716077387332916, 0.15905055403709412, 0.1625821739435196, 0.1646568775177002, 0.16688288748264313, 0.16978459060192108, 0.17274752259254456, 0.17532853782176971, 0.17801539599895477, 0.18023106455802917, 0.18420127034187317, 0.18651434779167175, 0.1898859441280365, 0.19370707869529724, 0.1962401270866394, 0.19966931641101837, 0.2029142677783966, 0.20599901676177979, 0.20975154638290405, 0.21235206723213196]}
modelllls/mnist_model_lr0.00031948_bs512_epochs50.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.5775238275527954, 0.8238571286201477, 0.8700000047683716, 0.8908571600914001, 0.9023333191871643, 0.9106190204620361, 0.9162380695343018, 0.9222857356071472, 0.9264761805534363, 0.9299047589302063, 0.9334285855293274, 0.9365237951278687, 0.9384762048721313, 0.9405714273452759, 0.9429523944854736, 0.9454285502433777, 0.9469524025917053, 0.9485238194465637, 0.9500476121902466, 0.9520476460456848, 0.9537143111228943, 0.9550952315330505, 0.9562857151031494, 0.9575238227844238, 0.9590952396392822, 0.9604285955429077, 0.9623333215713501, 0.9629999995231628, 0.9640476107597351, 0.9649524092674255, 0.9660952091217041, 0.9672380685806274, 0.9682857394218445, 0.9696190357208252, 0.9702857136726379, 0.9708571434020996, 0.9718095064163208, 0.9728095531463623, 0.9740952253341675, 0.9749047756195068, 0.975857138633728, 0.9768095016479492, 0.9775238037109375, 0.9784285426139832, 0.9789047837257385, 0.9795238375663757, 0.9806666374206543, 0.9815238118171692, 0.9821428656578064, 0.9826666712760925], "loss": [1.6363369226455688, 0.7838679552078247, 0.5343096852302551, 0.4357924163341522, 0.3812984824180603, 0.34537771344184875, 0.3191530108451843, 0.29868757724761963, 0.28193122148513794, 0.26769521832466125, 0.2551671862602234, 0.2439301759004593, 0.23371972143650055, 0.2243274450302124, 0.21563725173473358, 0.20750929415225983, 0.1998986005783081, 0.19279511272907257, 0.18609830737113953, 0.17975616455078125, 0.17372649908065796, 0.16801883280277252, 0.16257651150226593, 0.15739858150482178, 0.15245665609836578, 0.14774610102176666, 0.14323706924915314, 0.1389441043138504, 0.13479872047901154, 0.13083451986312866, 0.12702979147434235, 0.12336190044879913, 0.11984460055828094, 0.11646255105733871, 0.11319145560264587, 0.11004483699798584, 0.10701049864292145, 0.10407166182994843, 0.10123643279075623, 0.098486989736557, 0.09582050144672394, 0.0932420864701271, 0.09074994176626205, 0.08833468705415726, 0.08598508685827255, 0.08372078835964203, 0.08151520043611526, 0.07938739657402039, 0.07729194313287735, 0.07525629550218582], "val_accuracy": [0.7711666822433472, 0.8489999771118164, 0.8805000185966492, 0.8960000276565552, 0.9036666750907898, 0.9089999794960022, 0.9138333201408386, 0.9173333048820496, 0.9211666584014893, 0.924833357334137, 0.9266666769981384, 0.9284999966621399, 0.9301666617393494, 0.9319999814033508, 0.9334999918937683, 0.9340000152587891, 0.9353333115577698, 0.9368333220481873, 0.9386666417121887, 0.9393333196640015, 0.940500020980835, 0.9415000081062317, 0.9423333406448364, 0.9428333044052124, 0.9434999823570251, 0.9441666603088379, 0.9449999928474426, 0.9458333253860474, 0.9465000033378601, 0.9468333125114441, 0.9468333125114441, 0.9473333358764648, 0.9476666450500488, 0.9483333230018616, 0.9488333463668823, 0.9491666555404663, 0.9493333101272583, 0.950166642665863, 0.9505000114440918, 0.9505000114440918, 0.9509999752044678, 0.9513333439826965, 0.9520000219345093, 0.9523333311080933, 0.9526666402816772, 0.953499972820282, 0.953166663646698, 0.9536666870117188, 0.9536666870117188, 0.9543333053588867], "val_loss": [1.0225058794021606, 0.6113244295120239, 0.47560688853263855, 0.4095365107059479, 0.36935579776763916, 0.3418038785457611, 0.3214412033557892, 0.3055603802204132, 0.2926303744316101, 0.281757652759552, 0.27215132117271423, 0.26378700137138367, 0.25635308027267456, 0.24960662424564362, 0.2434287667274475, 0.23770976066589355, 0.23238667845726013, 0.22742944955825806, 0.22269997000694275, 0.21825522184371948, 0.21402640640735626, 0.2101142853498459, 0.20634828507900238, 0.2028474062681198, 0.1995190978050232, 0.19645123183727264, 0.1935114711523056, 0.19073887169361115, 0.18807801604270935, 0.1855747252702713, 0.18328993022441864, 0.18107083439826965, 0.17899367213249207, 0.1769440919160843, 0.17504103481769562, 0.17323175072669983, 0.1714978814125061, 0.1698751598596573, 0.16830317676067352, 0.1667693853378296, 0.1653590351343155, 0.16403207182884216, 0.1627456247806549, 0.16152478754520416, 0.16036805510520935, 0.15923941135406494, 0.1581331342458725, 0.15709073841571808, 0.15611179172992706, 0.15516051650047302]}
modelllls/mnist_model_lr0.00031948_bs8_epochs25.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.8826666474342346, 0.9400476217269897, 0.9565714001655579, 0.9668571352958679, 0.9743333458900452, 0.9807618856430054, 0.9851904511451721, 0.9891428351402283, 0.9920476078987122, 0.9944761991500854, 0.99657142162323, 0.9978571534156799, 0.9986666440963745, 0.9993809461593628, 0.9995238184928894, 0.9997143149375916, 0.9999047517776489, 0.9999523758888245, 0.999666690826416, 0.9997143149375916, 0.9999047517776489, 1.0, 1.0, 0.9997143149375916, 1.0], "loss": [0.43576472997665405, 0.21695144474506378, 0.15780413150787354, 0.12119758129119873, 0.09519705921411514, 0.07562849670648575, 0.06011281535029411, 0.04773591458797455, 0.03751923888921738, 0.029396601021289825, 0.02281133271753788, 0.017387868836522102, 0.013251910917460918, 0.009751692414283752, 0.0072585283778607845, 0.005543817766010761, 0.004080136306583881, 0.003031443804502487, 0.0029734259005635977, 0.0033320889342576265, 0.0017201221780851483, 0.0009472818928770721, 0.0014661136083304882, 0.0019960820209234953, 0.0007899506017565727], "val_accuracy": [0.9261666536331177, 0.9394999742507935, 0.9449999928474426, 0.9490000009536743, 0.95333331823349, 0.9551666378974915, 0.9564999938011169, 0.9568333625793457, 0.9586666822433472, 0.9596666693687439, 0.9598333239555359, 0.9610000252723694, 0.9606666564941406, 0.9616666436195374, 0.9614999890327454, 0.9620000123977661, 0.9618333578109741, 0.9623333215713501, 0.9581666588783264, 0.9608333110809326, 0.9635000228881836, 0.9623333215713501, 0.9623333215713501, 0.9610000252723694, 0.9626666903495789], "val_loss": [0.2668614685535431, 0.2121264636516571, 0.1833493858575821, 0.16626465320587158, 0.15589553117752075, 0.15006089210510254, 0.14581377804279327, 0.14298485219478607, 0.14216136932373047, 0.14370732009410858, 0.14551670849323273, 0.14998197555541992, 0.15432208776474, 0.16180607676506042, 0.16334794461727142, 0.16970321536064148, 0.1767466813325882, 0.17969612777233124, 0.20198020339012146, 0.1916487067937851, 0.18149197101593018, 0.19978801906108856, 0.19266749918460846, 0.20197570323944092, 0.19466543197631836]}
modelllls/mnist_model_lr1.2e-05_bs128_epochs15.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.14861904084682465, 0.37323808670043945, 0.5547618865966797, 0.6490952372550964, 0.7035714387893677, 0.7424286007881165, 0.7689999938011169, 0.7874761819839478, 0.8014285564422607, 0.8124762177467346, 0.8237142562866211, 0.8323333263397217, 0.8392381072044373, 0.8463809490203857, 0.8520476222038269], "loss": [2.289426803588867, 2.0518290996551514, 1.8389943838119507, 1.6414155960083008, 1.4619324207305908, 1.3066972494125366, 1.1770659685134888, 1.069943904876709, 0.980669379234314, 0.9055358171463013, 0.841975748538971, 0.7878777980804443, 0.7414411902427673, 0.7012310028076172, 0.6660864353179932], "val_accuracy": [0.2541666626930237, 0.5019999742507935, 0.6115000247955322, 0.6728333234786987, 0.7174999713897705, 0.7429999709129333, 0.7661666870117188, 0.7854999899864197, 0.7975000143051147, 0.8084999918937683, 0.8190000057220459, 0.8268333077430725, 0.8323333263397217, 0.8416666388511658, 0.8481666445732117], "val_loss": [2.154665946960449, 1.9346745014190674, 1.7315174341201782, 1.5442290306091309, 1.3783886432647705, 1.238124966621399, 1.1220070123672485, 1.0256558656692505, 0.9447309374809265, 0.8762861490249634, 0.8181656002998352, 0.768483579158783, 0.7255935072898865, 0.6882556676864624, 0.6554573774337769]}
modelllls/mnist_model_lr1.2e-05_bs128_epochs35.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.16814285516738892, 0.3922380805015564, 0.5627142786979675, 0.6586666703224182, 0.7110000252723694, 0.7451905012130737, 0.769428551197052, 0.7882857322692871, 0.8025714159011841, 0.8154285550117493, 0.8262380957603455, 0.83519047498703, 0.8422380685806274, 0.8491904735565186, 0.8551428318023682, 0.8595714569091797, 0.8638571500778198, 0.8683333396911621, 0.8727619051933289, 0.8756190538406372, 0.8789523839950562, 0.8813333511352539, 0.8837142586708069, 0.8852857351303101, 0.8874762058258057, 0.8895714282989502, 0.8914285898208618, 0.8929523825645447, 0.8944761753082275, 0.8965714573860168, 0.8983809351921082, 0.899571418762207, 0.9010000228881836, 0.9023809432983398, 0.9036666750907898], "loss": [2.215862274169922, 2.000497579574585, 1.7987126111984253, 1.6068692207336426, 1.4321539402008057, 1.2798255681991577, 1.151246428489685, 1.0442240238189697, 0.9556412100791931, 0.881987452507019, 0.8202090859413147, 0.7678372263908386, 0.7230242490768433, 0.6844098567962646, 0.6508065462112427, 0.6213171482086182, 0.5952534675598145, 0.5720328092575073, 0.5512222647666931, 0.5324834585189819, 0.5155434608459473, 0.5001636147499084, 0.4861507713794708, 0.47332292795181274, 0.4615408182144165, 0.45068174600601196, 0.4406469166278839, 0.431343138217926, 0.42268913984298706, 0.4146178364753723, 0.4070708155632019, 0.40000227093696594, 0.3933682143688202, 0.38712620735168457, 0.38124436140060425], "val_accuracy": [0.25999999046325684, 0.47466665506362915, 0.6004999876022339, 0.6679999828338623, 0.7098333239555359, 0.7429999709129333, 0.7663333415985107, 0.7854999899864197, 0.8003333210945129, 0.8141666650772095, 0.824999988079071, 0.8336666822433472, 0.8413333296775818, 0.847000002861023, 0.8536666631698608, 0.8581666946411133, 0.8615000247955322, 0.8666666746139526, 0.8705000281333923, 0.8741666674613953, 0.8761666417121887, 0.8788333535194397, 0.8818333148956299, 0.8846666812896729, 0.8868333101272583, 0.8898333311080933, 0.890999972820282, 0.8923333287239075, 0.8933333158493042, 0.8945000171661377, 0.8961666822433472, 0.8974999785423279, 0.8983333110809326, 0.8985000252723694, 0.9003333449363708], "val_loss": [2.1217517852783203, 1.9164073467254639, 1.7177797555923462, 1.5330947637557983, 1.3681516647338867, 1.2264190912246704, 1.1075739860534668, 1.009228229522705, 0.9277044534683228, 0.8596774339675903, 0.8023195862770081, 0.7533852458000183, 0.7113900780677795, 0.6750460863113403, 0.6433637142181396, 0.6154935359954834, 0.5907970070838928, 0.5687580704689026, 0.5490002036094666, 0.5312231183052063, 0.5151231288909912, 0.500523567199707, 0.4872021973133087, 0.47500747442245483, 0.4638042747974396, 0.4534846246242523, 0.4439517855644226, 0.43511661887168884, 0.42690184712409973, 0.41924628615379333, 0.4121030271053314, 0.40543630719184875, 0.3991905152797699, 0.39332544803619385, 0.38780859112739563]}
modelllls/mnist_model_lr1.2e-05_bs16_epochs45.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.46000000834465027, 0.777571439743042, 0.8288571238517761, 0.8537142872810364, 0.8694285750389099, 0.8806190490722656, 0.8880476355552673, 0.8948571681976318, 0.8990952372550964, 0.9029523730278015, 0.9069523811340332, 0.9096666574478149, 0.9112380743026733, 0.9139524102210999, 0.9159047603607178, 0.9179999828338623, 0.9195238351821899, 0.9211905002593994, 0.9230952262878418, 0.9241904616355896, 0.9259523749351501, 0.9272857308387756, 0.9286190271377563, 0.9295714497566223, 0.9307619333267212, 0.9317619204521179, 0.9330475926399231, 0.9337618947029114, 0.934238076210022, 0.9354285597801208, 0.936380922794342, 0.937333345413208, 0.9380000233650208, 0.9387618899345398, 0.9398571252822876, 0.940666675567627, 0.9415714144706726, 0.9424285888671875, 0.9431904554367065, 0.9435238242149353, 0.944523811340332, 0.9453333616256714, 0.9459523558616638, 0.946238100528717, 0.9468571543693542], "loss": [1.8972949981689453, 1.1774541139602661, 0.829535722732544, 0.6600012183189392, 0.5627772808074951, 0.5004153251647949, 0.4571913182735443, 0.4254692494869232, 0.4010326564311981, 0.38145318627357483, 0.36527398228645325, 0.3515574336051941, 0.339686781167984, 0.3292393386363983, 0.31992849707603455, 0.31150317192077637, 0.3038153350353241, 0.2967471778392792, 0.29021522402763367, 0.28414690494537354, 0.2784653306007385, 0.27311381697654724, 0.2680629789829254, 0.26328423619270325, 0.25874876976013184, 0.2544364035129547, 0.2503189444541931, 0.24637195467948914, 0.2425776571035385, 0.238924041390419, 0.23539908230304718, 0.23198777437210083, 0.2286834716796875, 0.22547851502895355, 0.22236664593219757, 0.21932297945022583, 0.2163635790348053, 0.21349571645259857, 0.21070517599582672, 0.20799383521080017, 0.20535719394683838, 0.20278790593147278, 0.20028170943260193, 0.19783300161361694, 0.19544030725955963], "val_accuracy": [0.7121666669845581, 0.8075000047683716, 0.8424999713897705, 0.8613333106040955, 0.8734999895095825, 0.8828333616256714, 0.8901666402816772, 0.8951666951179504, 0.8993333578109741, 0.9023333191871643, 0.906000018119812, 0.9081666469573975, 0.9098333120346069, 0.9113333225250244, 0.9139999747276306, 0.9148333072662354, 0.9168333411216736, 0.9175000190734863, 0.9191666841506958, 0.9203333258628845, 0.921500027179718, 0.9229999780654907, 0.9238333106040955, 0.924833357334137, 0.9253333210945129, 0.9259999990463257, 0.9261666536331177, 0.9268333315849304, 0.9281666874885559, 0.9291666746139526, 0.9300000071525574, 0.9301666617393494, 0.9304999709129333, 0.9308333396911621, 0.9313333630561829, 0.9321666955947876, 0.9331666827201843, 0.9331666827201843, 0.934166669845581, 0.934333324432373, 0.934333324432373, 0.9348333477973938, 0.9348333477973938, 0.9350000023841858, 0.9351666569709778], "val_loss": [1.4730535745620728, 0.9622023701667786, 0.7312817573547363, 0.6070884466171265, 0.5311920642852783, 0.48053526878356934, 0.44453954696655273, 0.4176631569862366, 0.39679378271102905, 0.3799991011619568, 0.3661295473575592, 0.3544238209724426, 0.34434205293655396, 0.3355086147785187, 0.32766231894493103, 0.32061442732810974, 0.31425634026527405, 0.30844467878341675, 0.303112655878067, 0.2982051372528076, 0.2936434745788574, 0.28939592838287354, 0.2854059934616089, 0.2816581726074219, 0.2781318426132202, 0.2747727036476135, 0.2715800106525421, 0.2685651183128357, 0.26568031311035156, 0.26290827989578247, 0.26024603843688965, 0.25767600536346436, 0.2551976442337036, 0.2528323233127594, 0.2505262792110443, 0.24831803143024445, 0.24617397785186768, 0.2440703958272934, 0.24204382300376892, 0.24006696045398712, 0.23815813660621643, 0.23631541430950165, 0.23449480533599854, 0.2327040433883667, 0.2309461086988449]}
modelllls/mnist_model_lr1.2e-05_bs256_epochs40.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.15176190435886383, 0.21690475940704346, 0.28795239329338074, 0.37190476059913635, 0.45976191759109497, 0.547428548336029, 0.6145238280296326, 0.6632381081581116, 0.6970475912094116, 0.7231904864311218, 0.7443333268165588, 0.7609047889709473, 0.774571418762207, 0.7861904501914978, 0.7971428632736206, 0.806857168674469, 0.8141428828239441, 0.8209999799728394, 0.8281905055046082, 0.833142876625061, 0.8377143144607544, 0.8420476317405701, 0.846666693687439, 0.8501904606819153, 0.8530952334403992, 0.8558095097541809, 0.8588095307350159, 0.8612381219863892, 0.864047646522522, 0.8662381172180176, 0.8685238361358643, 0.8705714344978333, 0.8722857236862183, 0.8742380738258362, 0.8756666779518127, 0.8775714039802551, 0.8787142634391785, 0.8802857398986816, 0.881761908531189, 0.8830476403236389], "loss": [2.2997398376464844, 2.1849935054779053, 2.0788354873657227, 1.9749890565872192, 1.8710453510284424, 1.76715087890625, 1.6647319793701172, 1.5653092861175537, 1.4699475765228271, 1.3802803754806519, 1.2975274324417114, 1.2221827507019043, 1.154056429862976, 1.0926505327224731, 1.037445306777954, 0.9877650737762451, 0.9429454803466797, 0.902406632900238, 0.8656008243560791, 0.8321242332458496, 0.8015285730361938, 0.7734532356262207, 0.7476485371589661, 0.7238531708717346, 0.7018495798110962, 0.6814658045768738, 0.662529706954956, 0.644880473613739, 0.6284000277519226, 0.6129940152168274, 0.598558247089386, 0.5850121378898621, 0.5722600221633911, 0.5602291822433472, 0.5488734841346741, 0.5381453037261963, 0.5279990434646606, 0.5183846950531006, 0.5092593431472778, 0.5005840063095093], "val_accuracy": [0.18316666781902313, 0.24666666984558105, 0.3323333263397217, 0.41749998927116394, 0.5066666603088379, 0.5861666798591614, 0.6481666564941406, 0.6881666779518127, 0.7139999866485596, 0.7386666536331177, 0.7559999823570251, 0.7714999914169312, 0.7836666703224182, 0.7976666688919067, 0.8051666617393494, 0.8140000104904175, 0.8188333511352539, 0.8243333101272583, 0.8295000195503235, 0.8333333134651184, 0.8373333215713501, 0.840499997138977, 0.8461666703224182, 0.8511666655540466, 0.8543333411216736, 0.8569999933242798, 0.859666645526886, 0.8621666431427002, 0.8654999732971191, 0.8679999709129333, 0.8694999814033508, 0.8708333373069763, 0.8728333115577698, 0.875333309173584, 0.8766666650772095, 0.878333330154419, 0.8790000081062317, 0.8806666731834412, 0.8816666603088379, 0.8823333382606506], "val_loss": [2.2343156337738037, 2.12636399269104, 2.0228774547576904, 1.9198437929153442, 1.8157459497451782, 1.7119511365890503, 1.6104241609573364, 1.5127941370010376, 1.4201170206069946, 1.3337409496307373, 1.2545469999313354, 1.1826114654541016, 1.1177204847335815, 1.0594110488891602, 1.0071260929107666, 0.9601377248764038, 0.9177631139755249, 0.8794138431549072, 0.8445708751678467, 0.8128392100334167, 0.7837977409362793, 0.7571631669998169, 0.7326771020889282, 0.7101025581359863, 0.6892345547676086, 0.6698756217956543, 0.6518725752830505, 0.6350750923156738, 0.6194034814834595, 0.6047540307044983, 0.5910284519195557, 0.5781390070915222, 0.5660052299499512, 0.5545688271522522, 0.5437867641448975, 0.5335909128189087, 0.5239417552947998, 0.5147917866706848, 0.5061084628105164, 0.4978545606136322]}
modelllls/mnist_model_lr1.2e-05_bs32_epochs15.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.36852380633354187, 0.6914761662483215, 0.7816666960716248, 0.8203333616256714, 0.843666672706604, 0.8577619194984436, 0.8687142729759216, 0.8761904835700989, 0.8822857141494751, 0.8868095278739929, 0.8908571600914001, 0.8942381143569946, 0.897761881351471, 0.900857150554657, 0.9040952324867249], "loss": [2.0477280616760254, 1.4882190227508545, 1.1137080192565918, 0.88554847240448, 0.7419373989105225, 0.6456765532493591, 0.5781538486480713, 0.5286576151847839, 0.4909289479255676, 0.4613359272480011, 0.43749353289604187, 0.41785338521003723, 0.4013615548610687, 0.387278288602829, 0.3750658333301544], "val_accuracy": [0.5753333568572998, 0.7381666898727417, 0.7926666736602783, 0.8208333253860474, 0.843999981880188, 0.859666645526886, 0.8703333139419556, 0.8776666522026062, 0.8849999904632568, 0.8893333077430725, 0.8933333158493042, 0.8966666460037231, 0.8986666798591614, 0.9016666412353516, 0.903333306312561], "val_loss": [1.7533706426620483, 1.2836191654205322, 0.9914882183074951, 0.812070906162262, 0.6949353814125061, 0.6143136620521545, 0.5565484762191772, 0.513418436050415, 0.48014384508132935, 0.4538189768791199, 0.43246304988861084, 0.41484734416007996, 0.400054395198822, 0.3874330222606659, 0.3765242099761963]}
modelllls/mnist_model_lr1.2e-05_bs512_epochs10.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.09109523892402649, 0.12447618693113327, 0.16785714030265808, 0.22514285147190094, 0.29609525203704834, 0.364809513092041, 0.42885714769363403, 0.4895237982273102, 0.5393809676170349, 0.5839999914169312], "loss": [2.3613786697387695, 2.284292459487915, 2.212482213973999, 2.1433987617492676, 2.0760929584503174, 2.0099411010742188, 1.944817304611206, 1.8806904554367065, 1.8177400827407837, 1.756287932395935], "val_accuracy": [0.1081666648387909, 0.14683333039283752, 0.20250000059604645, 0.27000001072883606, 0.3336666524410248, 0.3933333456516266, 0.45483332872390747, 0.5041666626930237, 0.5513333082199097, 0.5913333296775818], "val_loss": [2.3171021938323975, 2.2454488277435303, 2.1766631603240967, 2.1097564697265625, 2.043945550918579, 1.9789767265319824, 1.9150177240371704, 1.8520265817642212, 1.7902069091796875, 1.7297613620758057]}
modelllls/mnist_model_lr1.2e-05_bs512_epochs30.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.14523810148239136, 0.17499999701976776, 0.22123809158802032, 0.2831904888153076, 0.3468095362186432, 0.4041904807090759, 0.46071428060531616, 0.5130000114440918, 0.5579047799110413, 0.5961904525756836, 0.6291428804397583, 0.6576666831970215, 0.6792857050895691, 0.6964285969734192, 0.7099523544311523, 0.7237619161605835, 0.7348571419715881, 0.7451428771018982, 0.7541428804397583, 0.7625238299369812, 0.7680476307868958, 0.7747142910957336, 0.779619038105011, 0.7853333353996277, 0.7904762029647827, 0.7947618961334229, 0.7985237836837769, 0.8033333420753479, 0.807285726070404, 0.8107619285583496], "loss": [2.3447041511535645, 2.2642366886138916, 2.19211745262146, 2.124581813812256, 2.0600295066833496, 1.997493863105774, 1.9363389015197754, 1.8762085437774658, 1.8170944452285767, 1.759003758430481, 1.7020657062530518, 1.6464041471481323, 1.5920687913894653, 1.5391148328781128, 1.4875938892364502, 1.4378069639205933, 1.3900420665740967, 1.3442871570587158, 1.3007789850234985, 1.259371280670166, 1.2200143337249756, 1.1826757192611694, 1.1472804546356201, 1.1137354373931885, 1.0819406509399414, 1.0518302917480469, 1.0233467817306519, 0.996357262134552, 0.9707382917404175, 0.946455180644989], "val_accuracy": [0.16616666316986084, 0.19983333349227905, 0.25099998712539673, 0.3083333373069763, 0.3634999990463257, 0.41583332419395447, 0.46966665983200073, 0.5221666693687439, 0.5680000185966492, 0.6029999852180481, 0.6299999952316284, 0.6543333530426025, 0.6776666641235352, 0.6930000185966492, 0.7043333053588867, 0.7146666646003723, 0.7251666784286499, 0.7358333468437195, 0.7448333501815796, 0.7538333535194397, 0.7633333206176758, 0.768666684627533, 0.7748333215713501, 0.7799999713897705, 0.7860000133514404, 0.7900000214576721, 0.7951666712760925, 0.7994999885559082, 0.8053333163261414, 0.8088333606719971], "val_loss": [2.304471969604492, 2.2306439876556396, 2.162139415740967, 2.0969974994659424, 2.034104585647583, 1.9727435111999512, 1.9124236106872559, 1.8530884981155396, 1.7946714162826538, 1.7373300790786743, 1.6811875104904175, 1.6262376308441162, 1.5725637674331665, 1.5201982259750366, 1.4693377017974854, 1.4202858209609985, 1.3732576370239258, 1.3282657861709595, 1.2854810953140259, 1.2447127103805542, 1.206015944480896, 1.1693661212921143, 1.1346849203109741, 1.1019017696380615, 1.0708951950073242, 1.0415250062942505, 1.0137687921524048, 0.987490713596344, 0.9625660181045532, 0.9389711618423462]}
modelllls/mnist_model_lr1.2e-05_bs64_epochs10.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.22604762017726898, 0.4782381057739258, 0.6272857189178467, 0.7110475897789001, 0.7655237913131714, 0.7974761724472046, 0.8205237984657288, 0.8363333344459534, 0.8472856879234314, 0.8557618856430054], "loss": [2.2351505756378174, 1.8809845447540283, 1.5751302242279053, 1.3218220472335815, 1.1237298250198364, 0.9743444919586182, 0.8609467148780823, 0.7734598517417908, 0.7047325372695923, 0.6496632099151611], "val_accuracy": [0.3869999945163727, 0.5703333616256714, 0.6678333282470703, 0.7391666769981384, 0.778166651725769, 0.8006666898727417, 0.8205000162124634, 0.8343333601951599, 0.847000002861023, 0.8586666584014893], "val_loss": [2.038020372390747, 1.7120076417922974, 1.4340955018997192, 1.2110145092010498, 1.0415035486221313, 0.9137717485427856, 0.8158918619155884, 0.7395192980766296, 0.6789370775222778, 0.6298059821128845]}
modelllls/mnist_model_lr1.2e-05_bs8_epochs45.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.5854762196540833, 0.8198094964027405, 0.857619047164917, 0.8759999871253967, 0.8877142667770386, 0.8956666588783264, 0.9010476469993591, 0.9056666493415833, 0.9094761610031128, 0.9126666784286499, 0.9159047603607178, 0.9181428551673889, 0.919952392578125, 0.9220952391624451, 0.9235714077949524, 0.9253333210945129, 0.9274285435676575, 0.9292857050895691, 0.9309523701667786, 0.9320476055145264, 0.9336190223693848, 0.9350000023841858, 0.9360476136207581, 0.9377619028091431, 0.9389523863792419, 0.9399999976158142, 0.9411428570747375, 0.942380964756012, 0.9435714483261108, 0.9447619318962097, 0.9454761743545532, 0.9459523558616638, 0.9468571543693542, 0.9481428861618042, 0.9486666917800903, 0.9495238065719604, 0.9502857327461243, 0.950952410697937, 0.951619029045105, 0.9519523978233337, 0.9528571367263794, 0.9535238146781921, 0.9540476202964783, 0.9548095464706421, 0.9553333520889282], "loss": [1.6682571172714233, 0.9226315021514893, 0.6500812768936157, 0.5286478996276855, 0.46185728907585144, 0.4192863702774048, 0.3894253075122833, 0.3669669032096863, 0.34914907813072205, 0.3344229459762573, 0.32187387347221375, 0.3109642267227173, 0.30130627751350403, 0.29261717200279236, 0.2847202718257904, 0.2774692177772522, 0.2707357108592987, 0.26444730162620544, 0.2585623562335968, 0.25300464034080505, 0.2477269321680069, 0.24270495772361755, 0.2379220575094223, 0.23334647715091705, 0.22895547747612, 0.22473621368408203, 0.22067004442214966, 0.21674153208732605, 0.21295340359210968, 0.2092875987291336, 0.20572884380817413, 0.20228344202041626, 0.19894738495349884, 0.19570398330688477, 0.19254624843597412, 0.1894756257534027, 0.1864844709634781, 0.1835729479789734, 0.180728018283844, 0.17795605957508087, 0.1752542406320572, 0.1726197600364685, 0.17004555463790894, 0.16753129661083221, 0.16508330404758453], "val_accuracy": [0.7720000147819519, 0.8429999947547913, 0.8656666874885559, 0.8823333382606506, 0.89083331823349, 0.8971666693687439, 0.9023333191871643, 0.9049999713897705, 0.9070000052452087, 0.909333348274231, 0.9108333587646484, 0.9133333563804626, 0.9146666526794434, 0.9169999957084656, 0.9181666374206543, 0.9198333621025085, 0.9206666946411133, 0.922166645526886, 0.9246666431427002, 0.9258333444595337, 0.9276666641235352, 0.9286666512489319, 0.9300000071525574, 0.9301666617393494, 0.9313333630561829, 0.9321666955947876, 0.9325000047683716, 0.9331666827201843, 0.934499979019165, 0.9355000257492065, 0.9356666803359985, 0.9359999895095825, 0.9369999766349792, 0.937666654586792, 0.9375, 0.9381666779518127, 0.9388333559036255, 0.9388333559036255, 0.9391666650772095, 0.9394999742507935, 0.9399999976158142, 0.9399999976158142, 0.940833330154419, 0.9411666393280029, 0.9415000081062317], "val_loss": [1.186046838760376, 0.7539949417114258, 0.5818082094192505, 0.49506035447120667, 0.44342249631881714, 0.40926480293273926, 0.3847425878047943, 0.36594805121421814, 0.35099005699157715, 0.33860814571380615, 0.3280889689922333, 0.31899315118789673, 0.31099846959114075, 0.30387768149375916, 0.2974715232849121, 0.2915920913219452, 0.28616011142730713, 0.2811143696308136, 0.2764231264591217, 0.27200785279273987, 0.2678440809249878, 0.2639157772064209, 0.2601931691169739, 0.2566455006599426, 0.2532595098018646, 0.2500026822090149, 0.24685987830162048, 0.24384553730487823, 0.24096854031085968, 0.23819421231746674, 0.2355014681816101, 0.23292279243469238, 0.23042063415050507, 0.22800451517105103, 0.22564931213855743, 0.22337228059768677, 0.22114910185337067, 0.21902893483638763, 0.2169915735721588, 0.215005025267601, 0.21308499574661255, 0.21120791137218475, 0.2093716263771057, 0.20759809017181396, 0.2058539092540741]}
modelllls/mnist_model_lr1.44e-05_bs128_epochs35.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.15157142281532288, 0.36352381110191345, 0.5833333134651184, 0.688619077205658, 0.7370476126670837, 0.7684761881828308, 0.7910952568054199, 0.8080000281333923, 0.8201904892921448, 0.8314762115478516, 0.8408571481704712, 0.8471904993057251, 0.8523333072662354, 0.8586190342903137, 0.8638095259666443, 0.868571400642395, 0.8726190328598022, 0.8761904835700989, 0.8790000081062317, 0.8815237879753113, 0.8846190571784973, 0.886904776096344, 0.8894285559654236, 0.8915238380432129, 0.8941428661346436, 0.8954761624336243, 0.897095263004303, 0.8985714316368103, 0.9001428484916687, 0.9017142653465271, 0.9032857418060303, 0.9046666622161865, 0.9059523940086365, 0.9068095088005066, 0.908047616481781], "loss": [2.2387514114379883, 2.009152412414551, 1.799547791481018, 1.5983985662460327, 1.4119246006011963, 1.2484136819839478, 1.111411213874817, 0.9994512796401978, 0.908629834651947, 0.8342869281768799, 0.772727906703949, 0.7212796807289124, 0.677790105342865, 0.6405526399612427, 0.608353853225708, 0.5802720189094543, 0.5556647777557373, 0.5339308977127075, 0.5146077871322632, 0.49733445048332214, 0.48178631067276, 0.46770504117012024, 0.45488443970680237, 0.4431702494621277, 0.43240490555763245, 0.42248964309692383, 0.4133146405220032, 0.404795378446579, 0.39687225222587585, 0.3894823491573334, 0.38255879282951355, 0.37606412172317505, 0.3699474632740021, 0.3641769587993622, 0.3587229549884796], "val_accuracy": [0.2434999942779541, 0.49950000643730164, 0.6448333263397217, 0.7081666588783264, 0.7440000176429749, 0.7736666798591614, 0.7928333282470703, 0.8088333606719971, 0.8215000033378601, 0.8323333263397217, 0.8429999947547913, 0.8491666913032532, 0.8541666865348816, 0.8586666584014893, 0.8621666431427002, 0.8668333292007446, 0.8711666464805603, 0.8755000233650208, 0.8790000081062317, 0.8813333511352539, 0.8831666707992554, 0.8843333125114441, 0.8870000243186951, 0.89083331823349, 0.8930000066757202, 0.893833339214325, 0.8958333134651184, 0.8970000147819519, 0.8986666798591614, 0.9003333449363708, 0.9013333320617676, 0.9020000100135803, 0.9024999737739563, 0.9038333296775818, 0.9049999713897705], "val_loss": [2.1196067333221436, 1.9071425199508667, 1.7020869255065918, 1.5067358016967773, 1.330085039138794, 1.1796634197235107, 1.0559555292129517, 0.9555650353431702, 0.873927891254425, 0.806577742099762, 0.7506118416786194, 0.7035683393478394, 0.6635907888412476, 0.6291775107383728, 0.5992525219917297, 0.5730998516082764, 0.550115168094635, 0.5297876596450806, 0.5116853713989258, 0.4954664707183838, 0.48086726665496826, 0.46762198209762573, 0.4555782973766327, 0.44457030296325684, 0.4344812333583832, 0.42518794536590576, 0.4165915250778198, 0.4086250066757202, 0.4012143611907959, 0.39429789781570435, 0.3878363072872162, 0.3817976117134094, 0.37613290548324585, 0.3708144426345825, 0.3658035099506378]}
modelllls/mnist_model_lr1.44e-05_bs256_epochs40.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.10819047689437866, 0.2261904776096344, 0.3680952489376068, 0.4972380995750427, 0.5930952429771423, 0.66009521484375, 0.7039047479629517, 0.7352856993675232, 0.7576666474342346, 0.7749999761581421, 0.7882381081581116, 0.80009526014328, 0.808904767036438, 0.8160476088523865, 0.8226190209388733, 0.8279523849487305, 0.8335238099098206, 0.8381428718566895, 0.8426190614700317, 0.8465238213539124, 0.8503809571266174, 0.8537619113922119, 0.8577142953872681, 0.8608571290969849, 0.8636190295219421, 0.8658571243286133, 0.8686190247535706, 0.8705714344978333, 0.8725237846374512, 0.8741428852081299, 0.8760952353477478, 0.8778571486473083, 0.8790000081062317, 0.8802381157875061, 0.881761908531189, 0.8835238218307495, 0.8849523663520813, 0.8859999775886536, 0.8870000243186951, 0.8887143135070801], "loss": [2.3450114727020264, 2.1785202026367188, 2.0304508209228516, 1.8888006210327148, 1.7525005340576172, 1.6236237287521362, 1.5038906335830688, 1.3948309421539307, 1.2972280979156494, 1.2105454206466675, 1.1336560249328613, 1.0655187368392944, 1.0052083730697632, 0.9517620801925659, 0.9042659997940063, 0.8619603514671326, 0.824077844619751, 0.7899705171585083, 0.7591240406036377, 0.7310711741447449, 0.7054590582847595, 0.6819764971733093, 0.6603829264640808, 0.6404842138290405, 0.6220916509628296, 0.6050495505332947, 0.5892167687416077, 0.5744877457618713, 0.5607552528381348, 0.5479159355163574, 0.5359026193618774, 0.5246409177780151, 0.5140541791915894, 0.5040795207023621, 0.4946635365486145, 0.48575711250305176, 0.4773067831993103, 0.46928879618644714, 0.46167537569999695, 0.4544297456741333], "val_accuracy": [0.1511666625738144, 0.3018333315849304, 0.43316665291786194, 0.5403333306312561, 0.6200000047683716, 0.6753333210945129, 0.7118333578109741, 0.7390000224113464, 0.7599999904632568, 0.7763333320617676, 0.7893333435058594, 0.800166666507721, 0.8100000023841858, 0.815666675567627, 0.8220000267028809, 0.8268333077430725, 0.8331666588783264, 0.8381666541099548, 0.8426666855812073, 0.8461666703224182, 0.8483333587646484, 0.8539999723434448, 0.8576666712760925, 0.8603333234786987, 0.8640000224113464, 0.8658333420753479, 0.8686666488647461, 0.8701666593551636, 0.8715000152587891, 0.8734999895095825, 0.8759999871253967, 0.878166675567627, 0.8803333044052124, 0.8824999928474426, 0.8831666707992554, 0.8840000033378601, 0.8855000138282776, 0.8865000009536743, 0.887666642665863, 0.8889999985694885], "val_loss": [2.2702317237854004, 2.1156814098358154, 1.9711930751800537, 1.8317497968673706, 1.698253870010376, 1.5728470087051392, 1.4573795795440674, 1.3531148433685303, 1.2602876424789429, 1.1780025959014893, 1.1049785614013672, 1.0404548645019531, 0.9833157658576965, 0.9326183199882507, 0.8874834179878235, 0.8472400903701782, 0.8111467361450195, 0.7785758376121521, 0.7490037679672241, 0.7220969796180725, 0.6974971294403076, 0.6749526262283325, 0.6542298793792725, 0.6351074576377869, 0.6174126267433167, 0.6010159254074097, 0.5857661366462708, 0.57159024477005, 0.5583814382553101, 0.5460277795791626, 0.5344753265380859, 0.5236377120018005, 0.5134502649307251, 0.5038512945175171, 0.4947930872440338, 0.48623543977737427, 0.478119432926178, 0.47043177485466003, 0.4631292223930359, 0.4561920464038849]}
modelllls/mnist_model_lr1.44e-05_bs32_epochs15.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.3486666679382324, 0.7057142853736877, 0.7879999876022339, 0.825952410697937, 0.8501904606819153, 0.8652856945991516, 0.8756666779518127, 0.8823809623718262, 0.8891428709030151, 0.8931905031204224, 0.8981428742408752, 0.9015238285064697, 0.9043333530426025, 0.9073333144187927, 0.9092381000518799], "loss": [2.0258381366729736, 1.4048691987991333, 1.0255528688430786, 0.8114607334136963, 0.6818210482597351, 0.5962729454040527, 0.5363011360168457, 0.4922049045562744, 0.4585488736629486, 0.43205803632736206, 0.41067174077033997, 0.39302459359169006, 0.3781920075416565, 0.3654823899269104, 0.3544076085090637], "val_accuracy": [0.6266666650772095, 0.7511666417121887, 0.8068333268165588, 0.8393333554267883, 0.85916668176651, 0.8715000152587891, 0.8816666603088379, 0.8871666789054871, 0.8911666870117188, 0.8960000276565552, 0.8998333215713501, 0.9026666879653931, 0.9056666493415833, 0.9075000286102295, 0.909333348274231], "val_loss": [1.6633714437484741, 1.175854206085205, 0.8987532258033752, 0.7376681566238403, 0.6351429224014282, 0.56510990858078, 0.5147104263305664, 0.4770926237106323, 0.4480465352535248, 0.4250032901763916, 0.40629667043685913, 0.3907966613769531, 0.37774527072906494, 0.3665328025817871, 0.35681575536727905]}
modelllls/mnist_model_lr1.44e-05_bs32_epochs35.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": [0.4147142767906189, 0.7478571534156799, 0.8183809518814087, 0.8463809490203857, 0.8622381091117859, 0.8725714087486267, 0.8806190490722656, 0.8868095278739929, 0.8921904563903809, 0.8970476388931274, 0.900857150554657, 0.9040952324867249, 0.9072856903076172, 0.9096190333366394, 0.911476194858551, 0.9135714173316956, 0.9154285788536072, 0.916619062423706, 0.9183809757232666, 0.9196666479110718, 0.9210952520370483, 0.9228571653366089, 0.9241428375244141, 0.9255238175392151, 0.926809549331665, 0.9279999732971191, 0.929190456867218, 0.9300476312637329, 0.930904746055603, 0.931857168674469, 0.9327619075775146, 0.933571457862854, 0.9342857003211975, 0.9355238080024719, 0.9363333582878113], "loss": [1.9952340126037598, 1.34677255153656, 0.9630405306816101, 0.7594473361968994, 0.6407456994056702, 0.564069390296936, 0.5106028914451599, 0.4712805449962616, 0.44115781784057617, 0.4172571003437042, 0.39776042103767395, 0.3814941346645355, 0.367657870054245, 0.3556748926639557, 0.3451288044452667, 0.3357416093349457, 0.3273034989833832, 0.3196461796760559, 0.3126388490200043, 0.30617690086364746, 0.30019664764404297, 0.29462817311286926, 0.2894054353237152, 0.2844758629798889, 0.279802531003952, 0.2753700017929077, 0.27114978432655334, 0.26710814237594604, 0.26324325799942017, 0.2595377564430237, 0.2559607923030853, 0.2525008022785187, 0.2491561323404312, 0.2459179013967514, 0.24277234077453613], "val_accuracy": [0.6635000109672546, 0.7900000214576721, 0.831333339214325, 0.8519999980926514, 0.8675000071525574, 0.8756666779518127, 0.8826666474342346, 0.8886666893959045, 0.8923333287239075, 0.8970000147819519, 0.8986666798591614, 0.9011666774749756, 0.9035000205039978, 0.9053333401679993, 0.9076666831970215, 0.909333348274231, 0.9103333353996277, 0.9110000133514404, 0.9125000238418579, 0.9141666889190674, 0.9151666760444641, 0.9168333411216736, 0.9173333048820496, 0.9179999828338623, 0.9191666841506958, 0.9206666946411133, 0.9213333129882812, 0.9223333597183228, 0.9226666688919067, 0.9241666793823242, 0.9254999756813049, 0.9268333315849304, 0.9273333549499512, 0.9279999732971191, 0.9290000200271606], "val_loss": [1.626455545425415, 1.1125779151916504, 0.8429857492446899, 0.6936748623847961, 0.6014803647994995, 0.5392065644264221, 0.494466632604599, 0.4609004259109497, 0.4348400831222534, 0.41402262449264526, 0.3969995975494385, 0.38277116417884827, 0.3706434369087219, 0.36015787720680237, 0.35095110535621643, 0.3427996039390564, 0.3355100154876709, 0.3289155662059784, 0.3228967487812042, 0.31740015745162964, 0.31235000491142273, 0.3076847791671753, 0.3033269941806793, 0.29924142360687256, 0.29540377855300903, 0.2917902171611786, 0.28835785388946533, 0.28507697582244873, 0.28195860981941223, 0.27897384762763977, 0.2761111557483673, 0.27334776520729065, 0.2706919014453888, 0.26814383268356323, 0.2656840682029724]}