File size: 8,812 Bytes
206a6f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import streamlit as st
import cv2
import mediapipe as mp
import numpy as np
import time
import json

# Cache the MediaPipe Pose model
@st.cache_resource
def load_pose_model():
    mp_pose = mp.solutions.pose
    pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
    return mp_pose, pose

mp_pose, pose = load_pose_model()
mp_drawing = mp.solutions.drawing_utils

# Function to calculate angle
def calculate_angle(a, b, c):
    a = np.array(a)  # First point
    b = np.array(b)  # Mid point
    c = np.array(c)  # End point
    radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
    angle = np.abs(radians * 180.0 / np.pi)
    if angle > 180.0:
        angle = 360 - angle
    return angle

# Function to calculate body angle
def calculate_body_angle(shoulder, hip, ankle):
    shoulder = np.array(shoulder)
    hip = np.array(hip)
    ankle = np.array(ankle)
    radians = np.arctan2(ankle[1] - hip[1], ankle[0] - hip[0]) - np.arctan2(shoulder[1] - hip[1], shoulder[0] - hip[0])
    angle = np.abs(radians * 180.0 / np.pi)
    if angle > 180.0:
        angle = 360 - angle
    return angle

# Function to calculate rep score
def calculate_rep_score(elbow_angles, body_angles):
    ideal_elbow_range = (75, 90)
    ideal_body_range = (0, 10)
    elbow_score = sum(1 for angle in elbow_angles if ideal_elbow_range[0] <= angle <= ideal_elbow_range[1]) / len(elbow_angles) if elbow_angles else 0
    body_score = sum(1 for angle in body_angles if ideal_body_range[0] <= angle <= ideal_body_range[1]) / len(body_angles) if body_angles else 0
    return (elbow_score + body_score) / 2

# Function to generate workout report
def generate_workout_report(rep_scores, form_issues, analysis_time):
    overall_efficiency = sum(rep_scores) / len(rep_scores) if rep_scores else 0
    total_reps = len(rep_scores)
    elbows_not_bending_enough = form_issues['elbows_not_bending_enough']
    body_not_straight = form_issues['body_not_straight']

    report = f"""
    **Workout Report:**
    -----------------
    - **Total Push-ups:** {total_reps}
    - **Overall Workout Efficiency:** {overall_efficiency * 100:.2f}%
    - **Analysis Time:** {analysis_time:.2f} seconds

    **Form Issues:**
    - Elbows not bending enough: {elbows_not_bending_enough} reps ({(elbows_not_bending_enough / total_reps) * 100:.2f}% of reps)
    - Body not straight: {body_not_straight} reps ({(body_not_straight / total_reps) * 100:.2f}% of reps)
    """
    return report

# Load Lottie animation from a JSON file
def load_lottiefile(filepath: str):
    with open(filepath, "r") as f:
        return json.load(f)

# Streamlit app
st.markdown("<h1 style='text-align: center;'>Push-Up Form Analysis</h1>", unsafe_allow_html=True)

# Center the "Try Demo" button
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
    demo_button = st.button("Try Demo")

# Path to the demo video
demo_video_path = "W_58.mp4"

# Video selection logic
video_path = None
if demo_button:
    video_path = demo_video_path
    st.success("Demo video loaded successfully!")

st.write("Or upload your own video:")
# File uploader for user's video
uploaded_file = st.file_uploader("Choose a video file", type=["mp4", "mov", "avi"])
if uploaded_file is not None:
    with open("temp_video.mp4", "wb") as f:
        f.write(uploaded_file.getvalue())
    video_path = "temp_video.mp4"
    st.success("Your video uploaded successfully!")

if video_path:
    cap = cv2.VideoCapture(video_path)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = cap.get(cv2.CAP_PROP_FPS)
    st.write(f"Frames per second: {fps}")

    # Create placeholders for the three video outputs with titles
    col1, col2, col3 = st.columns(3)
    with col1:
        st.subheader("Original Video")
        original_video = st.empty()
    with col2:
        st.subheader("Pose Points")
        points_video = st.empty()
    with col3:
        st.subheader("Form Guide")
        guide_video = st.empty()

    feedback_placeholder = st.empty()

    rep_scores = []
    current_rep_angles = {'elbow': [], 'body': []}
    form_issues = {
        "elbows_not_bending_enough": 0,
        "body_not_straight": 0
    }
    stage = "UP"
    pushup_count = 0
    start_time = time.time()

    # Initialize form issues for the current rep
    current_rep_issues = {
        "elbows_not_bending_enough": False,
        "body_not_straight": False
    }

    try:
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            image.flags.writeable = False
            results = pose.process(image)
            image.flags.writeable = True
            image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

            if results.pose_landmarks:
                try:
                    landmarks = results.pose_landmarks.landmark
                    shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x * width,
                                landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y * height]
                    elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x * width,
                             landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y * height]
                    wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x * width,
                             landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y * height]
                    hip = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x * width,
                           landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y * height]
                    ankle = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x * width,
                             landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y * height]

                    angle_elbow = calculate_angle(shoulder, elbow, wrist)
                    angle_body = calculate_body_angle(shoulder, hip, ankle)

                    current_rep_angles['elbow'].append(angle_elbow)
                    current_rep_angles['body'].append(angle_body)

                    points_image = np.zeros((height, width, 3), dtype=np.uint8)
                    guide_image = np.zeros((height, width, 3), dtype=np.uint8)
                    mp_drawing.draw_landmarks(points_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
                    mp_drawing.draw_landmarks(guide_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)

                    if angle_elbow < 75:
                        current_rep_issues["elbows_not_bending_enough"] = True
                        cv2.line(guide_image, tuple(np.multiply(elbow, [1, 1]).astype(int)),
                                 tuple(np.multiply(wrist, [1, 1]).astype(int)), (0, 255, 255), 5)  # Yellow for elbow issues
                    if angle_body > 10:
                        current_rep_issues["body_not_straight"] = True
                        cv2.line(guide_image, tuple(np.multiply(shoulder, [1, 1]).astype(int)),
                                 tuple(np.multiply(hip, [1, 1]).astype(int)), (0, 0, 255), 5)  # Red for body issues

                    if angle_elbow > 90 and stage != "UP":
                        stage = "UP"
                        # Count issues for the completed rep
                        for issue, occurred in current_rep_issues.items():
                            if occurred:
                                form_issues[issue] += 1
                        # Reset current rep issues
                        current_rep_issues = {k: False for k in current_rep_issues}

                    if angle_elbow < 90 and stage == "UP":
                        stage = "DOWN"
                        pushup_count += 1
                        rep_score = calculate_rep_score(current_rep_angles['elbow'], current_rep_angles['body'])
                        rep_scores.append(rep_score)
                        current_rep_angles = {'elbow': [], 'body': []}

                    # Display the videos
                    original_video.image(image, channels="BGR")
                    points_video.image(points_image, channels="BGR")
                    guide_video.image(guide_image, channels="BGR")
                except AttributeError as e:
                    st.error(f"Error processing frame: {e}")
            else:
                st.warning("No pose landmarks detected in this frame.")
    except Exception as e:
        st.error(f"Error occurred: {e}")
    finally:
        cap.release()

    analysis_time = time.time() - start_time
    report = generate_workout_report(rep_scores, form_issues, analysis_time)
    feedback_placeholder.markdown(report)

    #st.balloons()  # Add a fun animation when the analysis is done