Spaces:
Sleeping
Sleeping
File size: 8,812 Bytes
206a6f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import streamlit as st
import cv2
import mediapipe as mp
import numpy as np
import time
import json
# Cache the MediaPipe Pose model
@st.cache_resource
def load_pose_model():
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
return mp_pose, pose
mp_pose, pose = load_pose_model()
mp_drawing = mp.solutions.drawing_utils
# Function to calculate angle
def calculate_angle(a, b, c):
a = np.array(a) # First point
b = np.array(b) # Mid point
c = np.array(c) # End point
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
# Function to calculate body angle
def calculate_body_angle(shoulder, hip, ankle):
shoulder = np.array(shoulder)
hip = np.array(hip)
ankle = np.array(ankle)
radians = np.arctan2(ankle[1] - hip[1], ankle[0] - hip[0]) - np.arctan2(shoulder[1] - hip[1], shoulder[0] - hip[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
# Function to calculate rep score
def calculate_rep_score(elbow_angles, body_angles):
ideal_elbow_range = (75, 90)
ideal_body_range = (0, 10)
elbow_score = sum(1 for angle in elbow_angles if ideal_elbow_range[0] <= angle <= ideal_elbow_range[1]) / len(elbow_angles) if elbow_angles else 0
body_score = sum(1 for angle in body_angles if ideal_body_range[0] <= angle <= ideal_body_range[1]) / len(body_angles) if body_angles else 0
return (elbow_score + body_score) / 2
# Function to generate workout report
def generate_workout_report(rep_scores, form_issues, analysis_time):
overall_efficiency = sum(rep_scores) / len(rep_scores) if rep_scores else 0
total_reps = len(rep_scores)
elbows_not_bending_enough = form_issues['elbows_not_bending_enough']
body_not_straight = form_issues['body_not_straight']
report = f"""
**Workout Report:**
-----------------
- **Total Push-ups:** {total_reps}
- **Overall Workout Efficiency:** {overall_efficiency * 100:.2f}%
- **Analysis Time:** {analysis_time:.2f} seconds
**Form Issues:**
- Elbows not bending enough: {elbows_not_bending_enough} reps ({(elbows_not_bending_enough / total_reps) * 100:.2f}% of reps)
- Body not straight: {body_not_straight} reps ({(body_not_straight / total_reps) * 100:.2f}% of reps)
"""
return report
# Load Lottie animation from a JSON file
def load_lottiefile(filepath: str):
with open(filepath, "r") as f:
return json.load(f)
# Streamlit app
st.markdown("<h1 style='text-align: center;'>Push-Up Form Analysis</h1>", unsafe_allow_html=True)
# Center the "Try Demo" button
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
demo_button = st.button("Try Demo")
# Path to the demo video
demo_video_path = "W_58.mp4"
# Video selection logic
video_path = None
if demo_button:
video_path = demo_video_path
st.success("Demo video loaded successfully!")
st.write("Or upload your own video:")
# File uploader for user's video
uploaded_file = st.file_uploader("Choose a video file", type=["mp4", "mov", "avi"])
if uploaded_file is not None:
with open("temp_video.mp4", "wb") as f:
f.write(uploaded_file.getvalue())
video_path = "temp_video.mp4"
st.success("Your video uploaded successfully!")
if video_path:
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
st.write(f"Frames per second: {fps}")
# Create placeholders for the three video outputs with titles
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("Original Video")
original_video = st.empty()
with col2:
st.subheader("Pose Points")
points_video = st.empty()
with col3:
st.subheader("Form Guide")
guide_video = st.empty()
feedback_placeholder = st.empty()
rep_scores = []
current_rep_angles = {'elbow': [], 'body': []}
form_issues = {
"elbows_not_bending_enough": 0,
"body_not_straight": 0
}
stage = "UP"
pushup_count = 0
start_time = time.time()
# Initialize form issues for the current rep
current_rep_issues = {
"elbows_not_bending_enough": False,
"body_not_straight": False
}
try:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = pose.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.pose_landmarks:
try:
landmarks = results.pose_landmarks.landmark
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x * width,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y * height]
elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x * width,
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y * height]
wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x * width,
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y * height]
hip = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x * width,
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y * height]
ankle = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x * width,
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y * height]
angle_elbow = calculate_angle(shoulder, elbow, wrist)
angle_body = calculate_body_angle(shoulder, hip, ankle)
current_rep_angles['elbow'].append(angle_elbow)
current_rep_angles['body'].append(angle_body)
points_image = np.zeros((height, width, 3), dtype=np.uint8)
guide_image = np.zeros((height, width, 3), dtype=np.uint8)
mp_drawing.draw_landmarks(points_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
mp_drawing.draw_landmarks(guide_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
if angle_elbow < 75:
current_rep_issues["elbows_not_bending_enough"] = True
cv2.line(guide_image, tuple(np.multiply(elbow, [1, 1]).astype(int)),
tuple(np.multiply(wrist, [1, 1]).astype(int)), (0, 255, 255), 5) # Yellow for elbow issues
if angle_body > 10:
current_rep_issues["body_not_straight"] = True
cv2.line(guide_image, tuple(np.multiply(shoulder, [1, 1]).astype(int)),
tuple(np.multiply(hip, [1, 1]).astype(int)), (0, 0, 255), 5) # Red for body issues
if angle_elbow > 90 and stage != "UP":
stage = "UP"
# Count issues for the completed rep
for issue, occurred in current_rep_issues.items():
if occurred:
form_issues[issue] += 1
# Reset current rep issues
current_rep_issues = {k: False for k in current_rep_issues}
if angle_elbow < 90 and stage == "UP":
stage = "DOWN"
pushup_count += 1
rep_score = calculate_rep_score(current_rep_angles['elbow'], current_rep_angles['body'])
rep_scores.append(rep_score)
current_rep_angles = {'elbow': [], 'body': []}
# Display the videos
original_video.image(image, channels="BGR")
points_video.image(points_image, channels="BGR")
guide_video.image(guide_image, channels="BGR")
except AttributeError as e:
st.error(f"Error processing frame: {e}")
else:
st.warning("No pose landmarks detected in this frame.")
except Exception as e:
st.error(f"Error occurred: {e}")
finally:
cap.release()
analysis_time = time.time() - start_time
report = generate_workout_report(rep_scores, form_issues, analysis_time)
feedback_placeholder.markdown(report)
#st.balloons() # Add a fun animation when the analysis is done
|