File size: 8,553 Bytes
206a6f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import streamlit as st
import cv2
import mediapipe as mp
import numpy as np
import time
import json

@st.cache_resource
def load_pose_model():
    mp_pose = mp.solutions.pose
    pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
    return mp_pose, pose

mp_pose, pose = load_pose_model()
mp_drawing = mp.solutions.drawing_utils

def calculate_angle(a, b, c):
    a = np.array(a)  # First
    b = np.array(b)  # Mid
    c = np.array(c)  # End
    radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
    angle = np.abs(radians * 180.0 / np.pi)
    if angle > 180.0:
        angle = 360 - angle
    return angle

def calculate_rep_score(knee_angles, hip_angles, back_angles):
    ideal_knee_range = (90, 110)
    ideal_hip_range = (80, 100)
    ideal_back_range = (70, 90)
    knee_score = sum(1 for angle in knee_angles if ideal_knee_range[0] <= angle <= ideal_knee_range[1]) / len(knee_angles) if knee_angles else 0
    hip_score = sum(1 for angle in hip_angles if ideal_hip_range[0] <= angle <= ideal_hip_range[1]) / len(hip_angles) if hip_angles else 0
    back_score = sum(1 for angle in back_angles if ideal_back_range[0] <= angle <= ideal_back_range[1]) / len(back_angles) if back_angles else 0
    return (knee_score + hip_score + back_score) / 3

def generate_workout_report(rep_scores, form_issues, analysis_time):
    if rep_scores:
        overall_efficiency = sum(rep_scores) / len(rep_scores)
    else:
        overall_efficiency = 0

    total_reps = len(rep_scores)
    
    if total_reps > 0:
        knee_percentage = form_issues['knees_bending_too_much'] / total_reps * 100
        hip_percentage = form_issues['hips_bending_too_much'] / total_reps * 100
        back_percentage = form_issues['back_leaning_too_much'] / total_reps * 100
    else:
        knee_percentage = 0
        hip_percentage = 0
        back_percentage = 0

    report = f"""
    Workout Report:
    ---------------
    Total Squats: {total_reps}
    Overall Workout Efficiency: {overall_efficiency * 100:.2f}%
    Analysis Time: {analysis_time:.2f} seconds
    Form Issues:
    - Knees bending too much: {form_issues['knees_bending_too_much']} reps ({knee_percentage:.2f}% of reps)
    - Hips bending too much: {form_issues['hips_bending_too_much']} reps ({hip_percentage:.2f}% of reps)
    - Back leaning too much: {form_issues['back_leaning_too_much']} reps ({back_percentage:.2f}% of reps)
    """
    return report

def load_lottiefile(filepath: str):
    with open(filepath, "r") as f:
        return json.load(f)

st.markdown("<h1 style='text-align: center;'>Squat Form Analysis</h1>", unsafe_allow_html=True)

col1, col2, col3 = st.columns([1,2,1])
with col2:
    demo_button = st.button("Try Demo")

demo_video_path = "demo.mp4"

video_path = None
if demo_button:
    video_path = demo_video_path
    st.success("Demo video loaded successfully!")

st.write("Or upload your own video:")
uploaded_file = st.file_uploader("Choose a video file", type=["mp4", "mov", "avi"])
if uploaded_file is not None:
    with open("temp_video.mp4", "wb") as f:
        f.write(uploaded_file.getvalue())
    video_path = "temp_video.mp4"
    st.success("Your video uploaded successfully!")

if video_path:
    cap = cv2.VideoCapture(video_path)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = cap.get(cv2.CAP_PROP_FPS)
    st.write(f"Frames per second: {fps}")

    col1, col2, col3 = st.columns(3)
    with col1:
        st.subheader("Original Video")
        original_video = st.empty()
    with col2:
        st.subheader("Pose Points")
        points_video = st.empty()
    with col3:
        st.subheader("Form Guide")
        guide_video = st.empty()

    squat_count_placeholder = st.empty()
    feedback_placeholder = st.empty()

    rep_scores = []
    current_rep_angles = {'knee': [], 'hip': [], 'back': []}
    form_issues = {
        "knees_bending_too_much": 0,
        "hips_bending_too_much": 0,
        "back_leaning_too_much": 0
    }
    stage = None
    squat_count = 0
    start_time = time.time()

    current_rep_issues = {
        "knees_bending_too_much": False,
        "hips_bending_too_much": False,
        "back_leaning_too_much": False
    }

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        image.flags.writeable = False
        results = pose.process(image)
        image.flags.writeable = True
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

        if results.pose_landmarks is not None:
            landmarks = results.pose_landmarks.landmark
            shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x * width,
                        landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y * height]
            hip = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x * width,
                   landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y * height]
            knee = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x * width,
                    landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y * height]
            ankle = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x * width,
                     landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y * height]

            angle_knee = calculate_angle(hip, knee, ankle)
            angle_hip = calculate_angle(shoulder, hip, knee)
            angle_back = calculate_angle(shoulder, hip, ankle)

            current_rep_angles['knee'].append(angle_knee)
            current_rep_angles['hip'].append(angle_hip)
            current_rep_angles['back'].append(angle_back)

            points_image = np.zeros((height, width, 3), dtype=np.uint8)
            guide_image = np.zeros((height, width, 3), dtype=np.uint8)
            mp_drawing.draw_landmarks(points_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)

            # Drawing on guide image with smaller markers
            mp_drawing.draw_landmarks(
                guide_image, 
                results.pose_landmarks, 
                mp_pose.POSE_CONNECTIONS,
                mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=1, circle_radius=2),  # Green for upper arm
                mp_drawing.DrawingSpec(color=(255, 0, 0), thickness=1, circle_radius=2)  # Red for lower arm
            )

            if angle_knee < 90:
                current_rep_issues["knees_bending_too_much"] = True
                cv2.line(guide_image, tuple(np.multiply(knee, [1, 1]).astype(int)),
                         tuple(np.multiply(ankle, [1, 1]).astype(int)), (0, 255, 255), 2)
            if angle_hip < 80:
                current_rep_issues["hips_bending_too_much"] = True
                cv2.line(guide_image, tuple(np.multiply(hip, [1, 1]).astype(int)),
                         tuple(np.multiply(knee, [1, 1]).astype(int)), (0, 0, 255), 2)
            if angle_back < 70:
                current_rep_issues["back_leaning_too_much"] = True
                cv2.line(guide_image, tuple(np.multiply(shoulder, [1, 1]).astype(int)),
                         tuple(np.multiply(hip, [1, 1]).astype(int)), (255, 0, 0), 2)

            # Rep counting logic
            if angle_knee > 160 and stage != "UP":
                stage = "UP"
                for issue, occurred in current_rep_issues.items():
                    if occurred:
                        form_issues[issue] += 1
                rep_scores.append(calculate_rep_score(
                    current_rep_angles['knee'],
                    current_rep_angles['hip'],
                    current_rep_angles['back']
                ))
                current_rep_angles = {'knee': [], 'hip': [], 'back': []}
                current_rep_issues = {k: False for k in current_rep_issues}
            elif angle_knee <= 90 and stage == "UP":
                stage = "DOWN"
                squat_count += 1
                squat_count_placeholder.write(f"Squat Count: {squat_count}")

        # Update video streams
        original_video.image(frame, channels="BGR", use_column_width=True)
        points_video.image(points_image, channels="BGR", use_column_width=True)
        guide_video.image(guide_image, channels="BGR", use_column_width=True)

    cap.release()
    end_time = time.time()
    analysis_time = end_time - start_time

    # Generate and display the report
    report = generate_workout_report(rep_scores, form_issues, analysis_time)
    feedback_placeholder.text(report)