Spaces:
Running
Running
File size: 12,290 Bytes
bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import io
import numpy as np
from PIL import Image as PIL_Image # Renaming to avoid conflict with Image from gltflib
import struct
import uuid
from gltflib import (
GLTF, GLTFModel, Asset, Scene, Node, Mesh, Primitive, Attributes, Buffer, BufferView, Image, Texture, TextureInfo, Material, Sampler, Accessor, AccessorType,
BufferTarget, ComponentType, GLBResource, PBRMetallicRoughness)
# Common configuration information
# Parts that are independent of the binary section's offset and size can be predefined.
# Asset
asset=Asset()
# Image
images=[
Image(mimeType='image/jpeg', bufferView=4),
Image(mimeType='image/jpeg',bufferView=5),
Image(mimeType='image/jpeg',bufferView=6),
Image(mimeType='image/jpeg',bufferView=7),
Image(mimeType='image/jpeg',bufferView=8),
Image(mimeType='image/jpeg',bufferView=9),
]
# Sampler
samplers = [Sampler(magFilter=9728, minFilter=9984)] # magFilter: Nearest filtering, minFilter: Mipmap + Nearest filtering
# Texture
textures = [
Texture(name='Front',sampler=0,source=0),
Texture(name='Back',sampler=0,source=1),
Texture(name='Left',sampler=0,source=2),
Texture(name='Right',sampler=0,source=3),
Texture(name='Top',sampler=0,source=4),
Texture(name='Bottom',sampler=0,source=5),
]
# Material
materials = [
Material(
pbrMetallicRoughness=PBRMetallicRoughness(
baseColorTexture=TextureInfo(index=0),
metallicFactor=0,
roughnessFactor=0.5
),
name='Material0',
alphaMode='OPAQUE',
doubleSided=False
),
Material(
pbrMetallicRoughness=PBRMetallicRoughness(
baseColorTexture=TextureInfo(index=1),
metallicFactor=0,
roughnessFactor=0.5
),
name='Material1',
alphaMode='OPAQUE',
doubleSided=False
),
Material(
pbrMetallicRoughness=PBRMetallicRoughness(
baseColorTexture=TextureInfo(index=2),
metallicFactor=0,
roughnessFactor=0.5
),
name='Material2',
alphaMode='OPAQUE',
doubleSided=True
),
Material(
pbrMetallicRoughness=PBRMetallicRoughness(
baseColorTexture=TextureInfo(index=3),
metallicFactor=0,
roughnessFactor=0.5
),
name='Material3',
alphaMode='OPAQUE',
doubleSided=True
),
Material(
pbrMetallicRoughness=PBRMetallicRoughness(
baseColorTexture=TextureInfo(index=4),
metallicFactor=0,
roughnessFactor=0.5
),
name='Material4',
alphaMode='OPAQUE',
doubleSided=True
),
Material(
pbrMetallicRoughness=PBRMetallicRoughness(
baseColorTexture=TextureInfo(index=5),
metallicFactor=0,
roughnessFactor=0.5
),
name='Material5',
alphaMode='OPAQUE',
doubleSided=True
),
]
# Mesh
meshes = [
Mesh(name='Front', primitives=[Primitive(attributes=Attributes(POSITION=0, NORMAL=1,TEXCOORD_0=2), indices=3, material=0)]),
Mesh(name='Back', primitives=[Primitive(attributes=Attributes(POSITION=0, NORMAL=1,TEXCOORD_0=2), indices=3, material=1)]),
Mesh(name='Left', primitives=[Primitive(attributes=Attributes(POSITION=0, NORMAL=1,TEXCOORD_0=2), indices=3, material=2)]),
Mesh(name='Right', primitives=[Primitive(attributes=Attributes(POSITION=0, NORMAL=1,TEXCOORD_0=2), indices=3, material=3)]),
Mesh(name='Top', primitives=[Primitive(attributes=Attributes(POSITION=0, NORMAL=1,TEXCOORD_0=2), indices=3, material=4)]),
Mesh(name='Bottom', primitives=[Primitive(attributes=Attributes(POSITION=0, NORMAL=1,TEXCOORD_0=2), indices=3, material=5)]),
]
def create_card_model(front_img_bytearray, back_img_bytearray, option_dict):
is_thick = True if option_dict['厚み'] == '有' else False
# Front image
front_img = PIL_Image.open(front_img_bytearray).convert('RGB')
front_bytearray = io.BytesIO()
front_img.save(front_bytearray, format="JPEG", quality=95) # Force JPEG format for saving
front_bytearray = front_bytearray.getvalue()
front_bytelen = len(front_bytearray)
# Back image
back_img = PIL_Image.open(back_img_bytearray).convert('RGB')
back_bytearray = io.BytesIO()
back_img.save(back_bytearray, format="JPEG", quality=95) # Force JPEG format for saving
back_bytearray = back_bytearray.getvalue()
back_bytelen = len(back_bytearray)
# Create side image (extend the color of the edges of the back side)
back_img_array = np.array(back_img)
left_side_img = PIL_Image.fromarray(np.tile(back_img_array[:, [0], :], [1, 32, 1]))
right_side_img = PIL_Image.fromarray(np.tile(back_img_array[:, [back_img_array.shape[1] - 1], :], [1, 32, 1]))
top_side_img = PIL_Image.fromarray(np.tile(back_img_array[[0], :, :], [32, 1, 1]))
bottom_side_img = PIL_Image.fromarray(np.tile(back_img_array[[back_img_array.shape[0] - 1], :, :], [32, 1, 1]))
left_side_bytearray = io.BytesIO()
left_side_img.save(left_side_bytearray, format="JPEG", quality=95) # Force JPEG format for saving
left_side_bytearray = left_side_bytearray.getvalue()
left_side_bytelen = len(left_side_bytearray)
right_side_bytearray = io.BytesIO()
right_side_img.save(right_side_bytearray, format="JPEG", quality=95) # Force JPEG format for saving
right_side_bytearray = right_side_bytearray.getvalue()
right_side_bytelen = len(right_side_bytearray)
top_side_bytearray = io.BytesIO()
top_side_img.save(top_side_bytearray, format="JPEG", quality=95) # Force JPEG format for saving
top_side_bytearray = top_side_bytearray.getvalue()
top_side_bytelen = len(top_side_bytearray)
bottom_side_bytearray = io.BytesIO()
bottom_side_img.save(bottom_side_bytearray, format="JPEG", quality=95) # Force JPEG format for saving
bottom_side_bytearray = bottom_side_bytearray.getvalue()
bottom_side_bytelen = len(bottom_side_bytearray)
# Vertex data(POSITION)
vertices = [
(-1.0, -1.0, 0.0),
( 1.0, -1.0, 0.0),
(-1.0, 1.0, 0.0),
( 1.0, 1.0, 0.0)
]
vertex_bytearray = bytearray()
for vertex in vertices:
for value in vertex:
vertex_bytearray.extend(struct.pack('f', value))
vertex_bytelen = len(vertex_bytearray)
mins = [min([vertex[i] for vertex in vertices]) for i in range(3)]
maxs = [max([vertex[i] for vertex in vertices]) for i in range(3)]
# Normal data(NORMAL)
normals = [( 0.0, 0.0, 1.0)] * 4
normal_bytearray = bytearray()
for normal in normals:
for value in normal:
normal_bytearray.extend(struct.pack('f', value))
normal_bytelen = len(normal_bytearray)
# Texture coordinates(TEXCOORD_0)
texcoord_0s = [
(0.0, 1.0),
(1.0, 1.0),
(0.0, 0.0),
(1.0, 0.0)
]
texcoord_0_bytearray = bytearray()
for texcoord_0 in texcoord_0s:
for value in texcoord_0:
texcoord_0_bytearray.extend(struct.pack('f', value))
texcoord_0_bytelen = len(texcoord_0_bytearray)
# Vertex indices
vertex_indices = [0, 1, 2, 1, 3, 2]
vertex_index_bytearray = bytearray()
for value in vertex_indices:
vertex_index_bytearray.extend(struct.pack('H', value))
vertex_index_bytelen = len(vertex_index_bytearray)
# Concatenation of the binary data section
bytearray_list = [
vertex_bytearray,
normal_bytearray,
texcoord_0_bytearray,
vertex_index_bytearray,
front_bytearray,
back_bytearray,
left_side_bytearray,
right_side_bytearray,
top_side_bytearray,
bottom_side_bytearray,
]
bytelen_list = [
vertex_bytelen,
normal_bytelen,
texcoord_0_bytelen,
vertex_index_bytelen,
front_bytelen,
back_bytelen,
left_side_bytelen,
right_side_bytelen,
top_side_bytelen,
bottom_side_bytelen
]
bytelen_cumsum_list = list(np.cumsum(bytelen_list))
bytelen_cumsum_list = list(map(lambda x: int(x), bytelen_cumsum_list))
all_bytearray = bytearray()
for temp_bytearray in bytearray_list:
all_bytearray.extend(temp_bytearray)
offset_list = [0] + bytelen_cumsum_list # The first offset is 0
offset_list.pop() # Remove the end
# GLBResource
resources = [GLBResource(data=all_bytearray)]
# Buffer
buffers = [Buffer(byteLength=len(all_bytearray))]
# BufferView
bufferViews = [
BufferView(buffer=0, byteOffset=offset_list[0], byteLength=bytelen_list[0], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[1], byteLength=bytelen_list[1], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[2], byteLength=bytelen_list[2], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[3], byteLength=bytelen_list[3], target=BufferTarget.ELEMENT_ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[4], byteLength=bytelen_list[4], target=None),
BufferView(buffer=0, byteOffset=offset_list[5], byteLength=bytelen_list[5], target=None),
BufferView(buffer=0, byteOffset=offset_list[6], byteLength=bytelen_list[6], target=None),
BufferView(buffer=0, byteOffset=offset_list[7], byteLength=bytelen_list[7], target=None),
BufferView(buffer=0, byteOffset=offset_list[8], byteLength=bytelen_list[8], target=None),
BufferView(buffer=0, byteOffset=offset_list[9], byteLength=bytelen_list[9], target=None),
]
# Accessor
accessors = [
Accessor(bufferView=0, componentType=ComponentType.FLOAT.value, count=len(vertices), type=AccessorType.VEC3.value, max=maxs, min=mins),
Accessor(bufferView=1, componentType=ComponentType.FLOAT.value, count=len(normals), type=AccessorType.VEC3.value, max=None, min=None),
Accessor(bufferView=2, componentType=ComponentType.FLOAT.value, count=len(texcoord_0s), type=AccessorType.VEC2.value, max=None, min=None),
Accessor(bufferView=3, componentType=ComponentType.UNSIGNED_SHORT.value, count=len(vertex_indices), type=AccessorType.SCALAR.value, max=None, min=None),
]
# Node
card_thickness = 0.025
card_ratio_x = 0.8679999709129333
card_ratio_y = 1.2130000591278076
card_ratio_z = 1
if is_thick:
nodes = [
Node(mesh=0, scale=[card_ratio_x, card_ratio_y, card_ratio_z], rotation=None, translation=[0, 0, card_thickness]),
Node(mesh=1, scale=[card_ratio_x, card_ratio_y, card_ratio_z], rotation=[0, 1, 0, 0], translation=[0, 0, -card_thickness]),
Node(mesh=2, scale=[card_thickness, card_ratio_y, card_ratio_z], rotation=[0, 0.7071, 0, 0.7071], translation=[ card_ratio_x, 0, 0]), # 左
Node(mesh=3, scale=[card_thickness, card_ratio_y, card_ratio_z], rotation=[0, -0.7071, 0, 0.7071], translation=[-card_ratio_x, 0, 0]), # 右
Node(mesh=4, scale=[card_ratio_x, card_thickness, card_ratio_z], rotation=[ 0.7071, 0, 0, 0.7071], translation=[0, card_ratio_y, 0]), # 上
Node(mesh=5, scale=[card_ratio_x, card_thickness, card_ratio_z], rotation=[-0.7071, 0, 0, 0.7071], translation=[0, -card_ratio_y, 0]), # 下
]
else:
nodes = [
Node(mesh=0, scale=[card_ratio_x, card_ratio_y, card_ratio_z], rotation=None),
Node(mesh=1, scale=[card_ratio_x, card_ratio_y, card_ratio_z], rotation=[0, 1, 0, 0])
]
# Scene
scene = 0
if is_thick:
scenes = [Scene(name='Scene', nodes=[0, 1, 2, 3, 4, 5])]
else:
scenes = [Scene(name='Scene', nodes=[0, 1])]
model = GLTFModel(
asset=asset,
buffers=buffers,
bufferViews=bufferViews,
accessors=accessors,
images=images,
samplers=samplers,
textures=textures,
materials=materials,
meshes=meshes,
nodes=nodes,
scene=scene,
scenes=scenes
)
gltf = GLTF(model=model, resources=resources)
tmp_filename = uuid.uuid4().hex
model_path = f'../tmp/{tmp_filename}.glb'
gltf.export(model_path)
return model_path
|