File size: 10,351 Bytes
bac55b4
 
6810bed
bac55b4
 
 
 
 
 
 
 
 
6810bed
bac55b4
 
6810bed
bac55b4
6810bed
bac55b4
 
 
 
6810bed
bac55b4
 
 
 
 
 
 
 
 
6810bed
bac55b4
 
 
6810bed
bac55b4
6810bed
bac55b4
 
 
 
 
 
 
 
 
 
 
 
6810bed
bac55b4
 
 
 
 
6810bed
 
bac55b4
 
6810bed
bac55b4
 
 
 
 
6810bed
bac55b4
 
6810bed
 
bac55b4
 
 
6810bed
bac55b4
 
6810bed
bac55b4
 
 
 
 
6810bed
bac55b4
 
 
 
 
 
6810bed
bac55b4
 
 
6810bed
bac55b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6810bed
bac55b4
 
6810bed
bac55b4
 
 
 
 
 
 
 
6810bed
bac55b4
 
 
 
 
 
6810bed
bac55b4
 
 
 
 
 
 
 
 
6810bed
bac55b4
 
 
 
 
6810bed
bac55b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6810bed
bac55b4
 
6810bed
bac55b4
 
6810bed
bac55b4
 
6810bed
bac55b4
 
6810bed
bac55b4
 
 
 
 
 
 
 
6810bed
bac55b4
 
 
 
 
 
 
6810bed
bac55b4
 
 
 
6810bed
bac55b4
 
6810bed
bac55b4
 
 
 
6810bed
bac55b4
 
 
 
 
 
 
 
 
 
 
 
 
6810bed
bac55b4
 
 
 
 
6810bed
bac55b4
 
 
 
6810bed
bac55b4
 
 
6810bed
bac55b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import io
import numpy as np
from PIL import Image as PIL_Image # Renaming to avoid conflict with Image from gltflib
import cv2
import struct
import triangle
import uuid

from gltflib import (
    GLTF, GLTFModel, Asset, Scene, Node, Mesh, Primitive, Attributes, Buffer, BufferView, Image, Texture, TextureInfo, Material, Sampler, Accessor, AccessorType,
    BufferTarget, ComponentType, GLBResource, PBRMetallicRoughness)

# Create vertex lists for both the front and back surfaces
def make_front_and_back_vertex_list(coordinate_list, img):

    # Front surface vertices
    front_vertex_list = []
    # Back surface vertices
    back_vertex_list = []
    for coordinates in coordinate_list:
        front_vertices = []
        back_vertices = []
        # Note that the Y-axis direction is inverted between the image and GLB, so be careful
        for coordinate in coordinates:
            front_vertices.append((coordinate[0] * 2 / img.size[0] - 1.0, -(coordinate[1] * 2 / img.size[1] - 1.0), 0.2))
            back_vertices.append((coordinate[0] * 2 / img.size[0] - 1.0, -(coordinate[1] * 2 / img.size[1] - 1.0), -0.2))
    
        front_vertex_list.append(front_vertices)
        back_vertex_list.append(back_vertices)

    return front_vertex_list, back_vertex_list
    
# Creation of various information for the mesh
def make_mesh_data(coordinate_list, img):
    front_vertex_list, back_vertex_list = make_front_and_back_vertex_list(coordinate_list, img)

    # Vertex data(POSITION)
    vertices = []
    # List of offset values used when determining vertex indices
    front_offset = 0
    front_offset_list = []
    back_offset_list = []
    for front_vertices, back_vertices in zip(front_vertex_list, back_vertex_list):
        vertices.extend(front_vertices)
        vertices.extend(back_vertices)

        back_offset = front_offset + len(front_vertices)
        front_offset_list.append(front_offset)
        back_offset_list.append(back_offset)
        front_offset += len(front_vertices) + len(back_vertices)        

    # Normal data(NORMAL)
    normals = []
    for front_vertices, back_vertices in zip(front_vertex_list, back_vertex_list):
        normals.extend([( 0.0,  0.0,  1.0)] * len(front_vertices))
        normals.extend([( 0.0,  0.0, -1.0)] * len(back_vertices))

    # Texture coordinates (TEXCOORD_0)
    # The image origin is at the top-left, requiring an inversion of the Y-axis.
    texcoord_0s = [((vertex[0] + 1.0) / 2.0, 1.0 - ((vertex[1] + 1.0) / 2.0) ) for vertex in vertices]

    # Vertex indices
    vertex_indices = []
    for front_vertices, back_vertices, front_offset, back_offset \
        in zip(front_vertex_list, back_vertex_list, front_offset_list, back_offset_list):
        polygon = {
            'vertices': np.array(front_vertices)[:, :2],
            'segments': np.array([( i, (i + 1) % (len(front_vertices)) ) for i in range(len(front_vertices))]) # Define each edge
        }
        triangulate_result = triangle.triangulate(polygon, 'p')
        vertex_indices.extend(list(np.array(triangulate_result['triangles']+front_offset).flatten())) # Front surface
        vertex_indices.extend(list((np.array(triangulate_result['triangles'])+back_offset).flatten())) # Back surface
        vertex_indices.extend(list(np.array([[front_offset + i, 
                                              front_offset + (i + 1) % len(front_vertices), 
                                              back_offset + i] 
                                               for i in range(len(front_vertices))]).flatten())) # Side surface 1
        vertex_indices.extend(list(np.array([[back_offset + i,
                                              back_offset + (i + 1) % len(back_vertices), 
                                              front_offset+ (i + 1) % len(front_vertices)] for i in range(len(front_vertices))]).flatten())) # Side surface 2
            
    return vertices, normals, texcoord_0s, vertex_indices

def create_extracted_objects_model(img_bytearray):

    # Retrieve the image
    img = PIL_Image.open(img_bytearray).convert('RGB')
    img_bytearray = io.BytesIO()
    img.save(img_bytearray, format="JPEG", quality=95)
    img_bytearray = img_bytearray.getvalue()
    img_bytelen = len(img_bytearray)

    # Calculate the scale of the 3D model
    scale_factor = np.power(img.size[0] * img.size[1], 0.5)
    scale = (img.size[0] / scale_factor, img.size[1] / scale_factor, 0.4)

    # Retrieve vertices of the main part of the image
    base_color = img.getpixel((0, 0))
    mask = PIL_Image.new('RGB', img.size)
    for i in range(img.size[0]):
        for j in range(img.size[1]):
            if base_color == img.getpixel((i, j)):
                mask.putpixel((i, j), (0, 0, 0))
            else:
                mask.putpixel((i, j), (255, 255, 255))

    opening = cv2.morphologyEx(np.array(mask), cv2.MORPH_OPEN, kernel=np.ones((15, 15),np.uint8))
    contours, _ = cv2.findContours(cv2.cvtColor(np.array(opening), cv2.COLOR_RGB2GRAY), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    coordinate_list = []
    for contour in contours:
        coordinates = []
        for [[x, y]] in contour:
            coordinates.append((x, y))
        coordinate_list.append(coordinates)
    
    # Creation of associated data for the mesh
    vertices, normals, texcoord_0s, vertex_indices = make_mesh_data(coordinate_list, img)
    
    # Vertex data(POSITION)
    vertex_bytearray = bytearray()
    for vertex in vertices:
        for value in vertex:
            vertex_bytearray.extend(struct.pack('f', value))
    vertex_bytelen = len(vertex_bytearray)
    mins = [min([vertex[i] for vertex in vertices]) for i in range(3)]
    maxs = [max([vertex[i] for vertex in vertices]) for i in range(3)]

    # Normal data(NORMAL)
    normal_bytearray = bytearray()
    for normal in normals:
        for value in normal:
            normal_bytearray.extend(struct.pack('f', value))
    normal_bytelen = len(normal_bytearray)

    # Texture coordinates(TEXCOORD_0)
    texcoord_0s = [
    ((vertex[0] + 1.0) / 2.0, 1.0 - ((vertex[1] + 1.0) / 2.0) ) for vertex in vertices
    ]
    texcoord_0_bytearray = bytearray()
    for texcoord_0 in texcoord_0s:
        for value in texcoord_0:
            texcoord_0_bytearray.extend(struct.pack('f', value))
    texcoord_0_bytelen = len(texcoord_0_bytearray)

    # Vertex indices
    vertex_index_bytearray = bytearray()
    for value in vertex_indices:
        vertex_index_bytearray.extend(struct.pack('H', value))
    vertex_index_bytelen = len(vertex_index_bytearray)

    # Concatenation of the binary data section
    bytearray_list = [
        vertex_bytearray,
        normal_bytearray,
        texcoord_0_bytearray,
        vertex_index_bytearray,
        img_bytearray,
    ]
    bytelen_list = [
        vertex_bytelen,
        normal_bytelen,
        texcoord_0_bytelen,
        vertex_index_bytelen,
        img_bytelen,
    ]
    bytelen_cumsum_list = list(np.cumsum(bytelen_list))
    bytelen_cumsum_list = list(map(lambda x: int(x), bytelen_cumsum_list))

    all_bytearray = bytearray()
    for temp_bytearray in bytearray_list:
        all_bytearray.extend(temp_bytearray)
    offset_list = [0] + bytelen_cumsum_list # The first offset is 0
    offset_list.pop() # 末尾を削除

    # GLBResource
    resources = [GLBResource(data=all_bytearray)]

    # Asset
    asset=Asset()

    # Buffer
    buffers = [Buffer(byteLength=len(all_bytearray))]

    # BufferView
    bufferViews = [
        BufferView(buffer=0, byteOffset=offset_list[0], byteLength=bytelen_list[0], target=BufferTarget.ARRAY_BUFFER.value),
        BufferView(buffer=0, byteOffset=offset_list[1], byteLength=bytelen_list[1], target=BufferTarget.ARRAY_BUFFER.value),
        BufferView(buffer=0, byteOffset=offset_list[2], byteLength=bytelen_list[2], target=BufferTarget.ARRAY_BUFFER.value),
        BufferView(buffer=0, byteOffset=offset_list[3], byteLength=bytelen_list[3], target=BufferTarget.ELEMENT_ARRAY_BUFFER.value),
        BufferView(buffer=0, byteOffset=offset_list[4], byteLength=bytelen_list[4], target=None),
    ]

    # Accessor
    accessors = [
        Accessor(bufferView=0, componentType=ComponentType.FLOAT.value, count=len(vertices), type=AccessorType.VEC3.value, max=maxs, min=mins),
        Accessor(bufferView=1, componentType=ComponentType.FLOAT.value, count=len(normals), type=AccessorType.VEC3.value, max=None, min=None),
        Accessor(bufferView=2, componentType=ComponentType.FLOAT.value, count=len(texcoord_0s), type=AccessorType.VEC2.value, max=None, min=None),
        Accessor(bufferView=3, componentType=ComponentType.UNSIGNED_SHORT.value, count=len(vertex_indices), type=AccessorType.SCALAR.value, max=None, min=None)
    ]

    # Image
    images=[
        Image(mimeType='image/jpeg', bufferView=4),
    ]

    # Sampler
    samplers = [Sampler(magFilter=9728, minFilter=9984)] # magFilter:最近傍フィルタリング、minFilter:ミップマップ+最近傍フィルタリング

    # Texture
    textures = [
        Texture(name='Main',sampler=0,source=0),
    ]

    # Material
    materials = [
        Material(
            pbrMetallicRoughness=PBRMetallicRoughness(
                baseColorTexture=TextureInfo(index=0),
                metallicFactor=0,
                roughnessFactor=1
            ),
            name='Material0',
            alphaMode='OPAQUE',
            doubleSided=True
        ),
    ]

    # Mesh
    meshes = [
        Mesh(name='Main', primitives=[Primitive(attributes=Attributes(POSITION=0, NORMAL=1,TEXCOORD_0=2),
                                                indices=3, material=0, mode=4)]),
    ]

    # Node
    nodes = [
        Node(mesh=0,rotation=None, scale=scale),
    ]

    # Scene
    scene = 0
    scenes = [Scene(name='Scene', nodes=[0])]

    # GLTFModel
    model = GLTFModel(
        asset=asset,
        buffers=buffers,
        bufferViews=bufferViews,
        accessors=accessors,
        images=images,
        samplers=samplers,
        textures=textures,
        materials=materials,
        meshes=meshes,
        nodes=nodes,
        scene=scene,
        scenes=scenes
    )

    gltf = GLTF(model=model, resources=resources)

    tmp_filename = uuid.uuid4().hex
    model_path = f'../tmp/{tmp_filename}.glb'

    gltf.export(model_path)

    return model_path