Spaces:
Sleeping
Sleeping
File size: 10,351 Bytes
bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 6810bed bac55b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import io
import numpy as np
from PIL import Image as PIL_Image # Renaming to avoid conflict with Image from gltflib
import cv2
import struct
import triangle
import uuid
from gltflib import (
GLTF, GLTFModel, Asset, Scene, Node, Mesh, Primitive, Attributes, Buffer, BufferView, Image, Texture, TextureInfo, Material, Sampler, Accessor, AccessorType,
BufferTarget, ComponentType, GLBResource, PBRMetallicRoughness)
# Create vertex lists for both the front and back surfaces
def make_front_and_back_vertex_list(coordinate_list, img):
# Front surface vertices
front_vertex_list = []
# Back surface vertices
back_vertex_list = []
for coordinates in coordinate_list:
front_vertices = []
back_vertices = []
# Note that the Y-axis direction is inverted between the image and GLB, so be careful
for coordinate in coordinates:
front_vertices.append((coordinate[0] * 2 / img.size[0] - 1.0, -(coordinate[1] * 2 / img.size[1] - 1.0), 0.2))
back_vertices.append((coordinate[0] * 2 / img.size[0] - 1.0, -(coordinate[1] * 2 / img.size[1] - 1.0), -0.2))
front_vertex_list.append(front_vertices)
back_vertex_list.append(back_vertices)
return front_vertex_list, back_vertex_list
# Creation of various information for the mesh
def make_mesh_data(coordinate_list, img):
front_vertex_list, back_vertex_list = make_front_and_back_vertex_list(coordinate_list, img)
# Vertex data(POSITION)
vertices = []
# List of offset values used when determining vertex indices
front_offset = 0
front_offset_list = []
back_offset_list = []
for front_vertices, back_vertices in zip(front_vertex_list, back_vertex_list):
vertices.extend(front_vertices)
vertices.extend(back_vertices)
back_offset = front_offset + len(front_vertices)
front_offset_list.append(front_offset)
back_offset_list.append(back_offset)
front_offset += len(front_vertices) + len(back_vertices)
# Normal data(NORMAL)
normals = []
for front_vertices, back_vertices in zip(front_vertex_list, back_vertex_list):
normals.extend([( 0.0, 0.0, 1.0)] * len(front_vertices))
normals.extend([( 0.0, 0.0, -1.0)] * len(back_vertices))
# Texture coordinates (TEXCOORD_0)
# The image origin is at the top-left, requiring an inversion of the Y-axis.
texcoord_0s = [((vertex[0] + 1.0) / 2.0, 1.0 - ((vertex[1] + 1.0) / 2.0) ) for vertex in vertices]
# Vertex indices
vertex_indices = []
for front_vertices, back_vertices, front_offset, back_offset \
in zip(front_vertex_list, back_vertex_list, front_offset_list, back_offset_list):
polygon = {
'vertices': np.array(front_vertices)[:, :2],
'segments': np.array([( i, (i + 1) % (len(front_vertices)) ) for i in range(len(front_vertices))]) # Define each edge
}
triangulate_result = triangle.triangulate(polygon, 'p')
vertex_indices.extend(list(np.array(triangulate_result['triangles']+front_offset).flatten())) # Front surface
vertex_indices.extend(list((np.array(triangulate_result['triangles'])+back_offset).flatten())) # Back surface
vertex_indices.extend(list(np.array([[front_offset + i,
front_offset + (i + 1) % len(front_vertices),
back_offset + i]
for i in range(len(front_vertices))]).flatten())) # Side surface 1
vertex_indices.extend(list(np.array([[back_offset + i,
back_offset + (i + 1) % len(back_vertices),
front_offset+ (i + 1) % len(front_vertices)] for i in range(len(front_vertices))]).flatten())) # Side surface 2
return vertices, normals, texcoord_0s, vertex_indices
def create_extracted_objects_model(img_bytearray):
# Retrieve the image
img = PIL_Image.open(img_bytearray).convert('RGB')
img_bytearray = io.BytesIO()
img.save(img_bytearray, format="JPEG", quality=95)
img_bytearray = img_bytearray.getvalue()
img_bytelen = len(img_bytearray)
# Calculate the scale of the 3D model
scale_factor = np.power(img.size[0] * img.size[1], 0.5)
scale = (img.size[0] / scale_factor, img.size[1] / scale_factor, 0.4)
# Retrieve vertices of the main part of the image
base_color = img.getpixel((0, 0))
mask = PIL_Image.new('RGB', img.size)
for i in range(img.size[0]):
for j in range(img.size[1]):
if base_color == img.getpixel((i, j)):
mask.putpixel((i, j), (0, 0, 0))
else:
mask.putpixel((i, j), (255, 255, 255))
opening = cv2.morphologyEx(np.array(mask), cv2.MORPH_OPEN, kernel=np.ones((15, 15),np.uint8))
contours, _ = cv2.findContours(cv2.cvtColor(np.array(opening), cv2.COLOR_RGB2GRAY), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
coordinate_list = []
for contour in contours:
coordinates = []
for [[x, y]] in contour:
coordinates.append((x, y))
coordinate_list.append(coordinates)
# Creation of associated data for the mesh
vertices, normals, texcoord_0s, vertex_indices = make_mesh_data(coordinate_list, img)
# Vertex data(POSITION)
vertex_bytearray = bytearray()
for vertex in vertices:
for value in vertex:
vertex_bytearray.extend(struct.pack('f', value))
vertex_bytelen = len(vertex_bytearray)
mins = [min([vertex[i] for vertex in vertices]) for i in range(3)]
maxs = [max([vertex[i] for vertex in vertices]) for i in range(3)]
# Normal data(NORMAL)
normal_bytearray = bytearray()
for normal in normals:
for value in normal:
normal_bytearray.extend(struct.pack('f', value))
normal_bytelen = len(normal_bytearray)
# Texture coordinates(TEXCOORD_0)
texcoord_0s = [
((vertex[0] + 1.0) / 2.0, 1.0 - ((vertex[1] + 1.0) / 2.0) ) for vertex in vertices
]
texcoord_0_bytearray = bytearray()
for texcoord_0 in texcoord_0s:
for value in texcoord_0:
texcoord_0_bytearray.extend(struct.pack('f', value))
texcoord_0_bytelen = len(texcoord_0_bytearray)
# Vertex indices
vertex_index_bytearray = bytearray()
for value in vertex_indices:
vertex_index_bytearray.extend(struct.pack('H', value))
vertex_index_bytelen = len(vertex_index_bytearray)
# Concatenation of the binary data section
bytearray_list = [
vertex_bytearray,
normal_bytearray,
texcoord_0_bytearray,
vertex_index_bytearray,
img_bytearray,
]
bytelen_list = [
vertex_bytelen,
normal_bytelen,
texcoord_0_bytelen,
vertex_index_bytelen,
img_bytelen,
]
bytelen_cumsum_list = list(np.cumsum(bytelen_list))
bytelen_cumsum_list = list(map(lambda x: int(x), bytelen_cumsum_list))
all_bytearray = bytearray()
for temp_bytearray in bytearray_list:
all_bytearray.extend(temp_bytearray)
offset_list = [0] + bytelen_cumsum_list # The first offset is 0
offset_list.pop() # 末尾を削除
# GLBResource
resources = [GLBResource(data=all_bytearray)]
# Asset
asset=Asset()
# Buffer
buffers = [Buffer(byteLength=len(all_bytearray))]
# BufferView
bufferViews = [
BufferView(buffer=0, byteOffset=offset_list[0], byteLength=bytelen_list[0], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[1], byteLength=bytelen_list[1], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[2], byteLength=bytelen_list[2], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[3], byteLength=bytelen_list[3], target=BufferTarget.ELEMENT_ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[4], byteLength=bytelen_list[4], target=None),
]
# Accessor
accessors = [
Accessor(bufferView=0, componentType=ComponentType.FLOAT.value, count=len(vertices), type=AccessorType.VEC3.value, max=maxs, min=mins),
Accessor(bufferView=1, componentType=ComponentType.FLOAT.value, count=len(normals), type=AccessorType.VEC3.value, max=None, min=None),
Accessor(bufferView=2, componentType=ComponentType.FLOAT.value, count=len(texcoord_0s), type=AccessorType.VEC2.value, max=None, min=None),
Accessor(bufferView=3, componentType=ComponentType.UNSIGNED_SHORT.value, count=len(vertex_indices), type=AccessorType.SCALAR.value, max=None, min=None)
]
# Image
images=[
Image(mimeType='image/jpeg', bufferView=4),
]
# Sampler
samplers = [Sampler(magFilter=9728, minFilter=9984)] # magFilter:最近傍フィルタリング、minFilter:ミップマップ+最近傍フィルタリング
# Texture
textures = [
Texture(name='Main',sampler=0,source=0),
]
# Material
materials = [
Material(
pbrMetallicRoughness=PBRMetallicRoughness(
baseColorTexture=TextureInfo(index=0),
metallicFactor=0,
roughnessFactor=1
),
name='Material0',
alphaMode='OPAQUE',
doubleSided=True
),
]
# Mesh
meshes = [
Mesh(name='Main', primitives=[Primitive(attributes=Attributes(POSITION=0, NORMAL=1,TEXCOORD_0=2),
indices=3, material=0, mode=4)]),
]
# Node
nodes = [
Node(mesh=0,rotation=None, scale=scale),
]
# Scene
scene = 0
scenes = [Scene(name='Scene', nodes=[0])]
# GLTFModel
model = GLTFModel(
asset=asset,
buffers=buffers,
bufferViews=bufferViews,
accessors=accessors,
images=images,
samplers=samplers,
textures=textures,
materials=materials,
meshes=meshes,
nodes=nodes,
scene=scene,
scenes=scenes
)
gltf = GLTF(model=model, resources=resources)
tmp_filename = uuid.uuid4().hex
model_path = f'../tmp/{tmp_filename}.glb'
gltf.export(model_path)
return model_path |