Spaces:
Running
Running
File size: 10,387 Bytes
bac55b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import io
import numpy as np
from PIL import Image as PIL_Image # gltflibのImageと被るので別名にする。
import cv2
import struct
import triangle
import uuid
from gltflib import (
GLTF, GLTFModel, Asset, Scene, Node, Mesh, Primitive, Attributes, Buffer, BufferView, Image, Texture, TextureInfo, Material, Sampler, Accessor, AccessorType,
BufferTarget, ComponentType, GLBResource, PBRMetallicRoughness)
# 表面及び裏面の頂点リストの作成
def make_front_and_back_vertex_list(coordinate_list, img):
# 表面の頂点
front_vertex_list = []
# 裏面の頂点
back_vertex_list = []
for coordinates in coordinate_list:
front_vertices = []
back_vertices = []
# Y軸方向は画像とGLBで上下が逆になるので注意
for coordinate in coordinates:
front_vertices.append((coordinate[0] * 2 / img.size[0] - 1.0, -(coordinate[1] * 2 / img.size[1] - 1.0), 0.2))
back_vertices.append((coordinate[0] * 2 / img.size[0] - 1.0, -(coordinate[1] * 2 / img.size[1] - 1.0), -0.2))
front_vertex_list.append(front_vertices)
back_vertex_list.append(back_vertices)
return front_vertex_list, back_vertex_list
# メッシュの各種情報の作成
def make_mesh_data(coordinate_list, img):
front_vertex_list, back_vertex_list = make_front_and_back_vertex_list(coordinate_list, img)
# 頂点データ(POSITION)
vertices = []
# 頂点インデックス決定時に使うオフセット値のリスト
front_offset = 0
front_offset_list = []
back_offset_list = []
for front_vertices, back_vertices in zip(front_vertex_list, back_vertex_list):
vertices.extend(front_vertices)
vertices.extend(back_vertices)
back_offset = front_offset + len(front_vertices)
front_offset_list.append(front_offset)
back_offset_list.append(back_offset)
front_offset += len(front_vertices) + len(back_vertices)
# 法線データ(NORMAL)
normals = []
for front_vertices, back_vertices in zip(front_vertex_list, back_vertex_list):
normals.extend([( 0.0, 0.0, 1.0)] * len(front_vertices))
normals.extend([( 0.0, 0.0, -1.0)] * len(back_vertices))
# テクスチャ座標(TEXCOORD_0)
# 画像は左上原点になり、Y軸の上下を変える必要がある。
texcoord_0s = [((vertex[0] + 1.0) / 2.0, 1.0 - ((vertex[1] + 1.0) / 2.0) ) for vertex in vertices]
# 頂点インデックス
vertex_indices = []
for front_vertices, back_vertices, front_offset, back_offset \
in zip(front_vertex_list, back_vertex_list, front_offset_list, back_offset_list):
polygon = {
'vertices': np.array(front_vertices)[:, :2],
'segments': np.array([( i, (i + 1) % (len(front_vertices)) ) for i in range(len(front_vertices))]) # 各辺を定義
}
triangulate_result = triangle.triangulate(polygon, 'p')
vertex_indices.extend(list(np.array(triangulate_result['triangles']+front_offset).flatten())) # 表面
vertex_indices.extend(list((np.array(triangulate_result['triangles'])+back_offset).flatten())) # 裏面
vertex_indices.extend(list(np.array([[front_offset + i,
front_offset + (i + 1) % len(front_vertices),
back_offset + i]
for i in range(len(front_vertices))]).flatten())) # 側面1
vertex_indices.extend(list(np.array([[back_offset + i,
back_offset + (i + 1) % len(back_vertices),
front_offset+ (i + 1) % len(front_vertices)] for i in range(len(front_vertices))]).flatten())) # 側面2
return vertices, normals, texcoord_0s, vertex_indices
def create_extracted_objects_model(img_bytearray):
# 画像の取得
img = PIL_Image.open(img_bytearray).convert('RGB')
img_bytearray = io.BytesIO()
img.save(img_bytearray, format="JPEG", quality=95)
img_bytearray = img_bytearray.getvalue()
img_bytelen = len(img_bytearray)
# 3Dモデルのスケールの計算
scale_factor = np.power(img.size[0] * img.size[1], 0.5)
scale = (img.size[0] / scale_factor, img.size[1] / scale_factor, 0.4)
# 画像主要部分の頂点の取得
base_color = img.getpixel((0, 0))
mask = PIL_Image.new('RGB', img.size)
for i in range(img.size[0]):
for j in range(img.size[1]):
if base_color == img.getpixel((i, j)):
mask.putpixel((i, j), (0, 0, 0))
else:
mask.putpixel((i, j), (255, 255, 255))
opening = cv2.morphologyEx(np.array(mask), cv2.MORPH_OPEN, kernel=np.ones((15, 15),np.uint8))
contours, _ = cv2.findContours(cv2.cvtColor(np.array(opening), cv2.COLOR_RGB2GRAY), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
coordinate_list = []
for contour in contours:
coordinates = []
for [[x, y]] in contour:
coordinates.append((x, y))
coordinate_list.append(coordinates)
# 各種データの作成
vertices, normals, texcoord_0s, vertex_indices = make_mesh_data(coordinate_list, img)
# 頂点データ(POSITION)
vertex_bytearray = bytearray()
for vertex in vertices:
for value in vertex:
vertex_bytearray.extend(struct.pack('f', value))
vertex_bytelen = len(vertex_bytearray)
mins = [min([vertex[i] for vertex in vertices]) for i in range(3)]
maxs = [max([vertex[i] for vertex in vertices]) for i in range(3)]
# 法線データ(NORMAL)
normal_bytearray = bytearray()
for normal in normals:
for value in normal:
normal_bytearray.extend(struct.pack('f', value))
normal_bytelen = len(normal_bytearray)
# テクスチャ座標(TEXCOORD_0)
texcoord_0s = [
((vertex[0] + 1.0) / 2.0, 1.0 - ((vertex[1] + 1.0) / 2.0) ) for vertex in vertices
]
texcoord_0_bytearray = bytearray()
for texcoord_0 in texcoord_0s:
for value in texcoord_0:
texcoord_0_bytearray.extend(struct.pack('f', value))
texcoord_0_bytelen = len(texcoord_0_bytearray)
# 頂点インデックス
vertex_index_bytearray = bytearray()
for value in vertex_indices:
vertex_index_bytearray.extend(struct.pack('H', value))
vertex_index_bytelen = len(vertex_index_bytearray)
# バイナリデータ部分の結合
bytearray_list = [
vertex_bytearray,
normal_bytearray,
texcoord_0_bytearray,
vertex_index_bytearray,
img_bytearray,
]
bytelen_list = [
vertex_bytelen,
normal_bytelen,
texcoord_0_bytelen,
vertex_index_bytelen,
img_bytelen,
]
bytelen_cumsum_list = list(np.cumsum(bytelen_list))
bytelen_cumsum_list = list(map(lambda x: int(x), bytelen_cumsum_list))
all_bytearray = bytearray()
for temp_bytearray in bytearray_list:
all_bytearray.extend(temp_bytearray)
offset_list = [0] + bytelen_cumsum_list # 最初のオフセットは0
offset_list.pop() # 末尾を削除
# リソースの作成
resources = [GLBResource(data=all_bytearray)]
# 各種設定
# アセット
asset=Asset()
# バッファ
buffers = [Buffer(byteLength=len(all_bytearray))]
# バッファビュー
bufferViews = [
BufferView(buffer=0, byteOffset=offset_list[0], byteLength=bytelen_list[0], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[1], byteLength=bytelen_list[1], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[2], byteLength=bytelen_list[2], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[3], byteLength=bytelen_list[3], target=BufferTarget.ELEMENT_ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[4], byteLength=bytelen_list[4], target=None),
]
# アクセサー
accessors = [
Accessor(bufferView=0, componentType=ComponentType.FLOAT.value, count=len(vertices), type=AccessorType.VEC3.value, max=maxs, min=mins),
Accessor(bufferView=1, componentType=ComponentType.FLOAT.value, count=len(normals), type=AccessorType.VEC3.value, max=None, min=None),
Accessor(bufferView=2, componentType=ComponentType.FLOAT.value, count=len(texcoord_0s), type=AccessorType.VEC2.value, max=None, min=None),
Accessor(bufferView=3, componentType=ComponentType.UNSIGNED_SHORT.value, count=len(vertex_indices), type=AccessorType.SCALAR.value, max=None, min=None)
]
# イメージ
images=[
Image(mimeType='image/jpeg', bufferView=4),
]
# サンプラー
samplers = [Sampler(magFilter=9728, minFilter=9984)] # magFilter:最近傍フィルタリング、minFilter:ミップマップ+最近傍フィルタリング
# テクスチャ
textures = [
Texture(name='Main',sampler=0,source=0),
]
# マテリアル
materials = [
Material(
pbrMetallicRoughness=PBRMetallicRoughness(
baseColorTexture=TextureInfo(index=0),
metallicFactor=0,
roughnessFactor=1
),
name='Material0',
alphaMode='OPAQUE',
doubleSided=True
),
]
# メッシュ
meshes = [
Mesh(name='Main', primitives=[Primitive(attributes=Attributes(POSITION=0, NORMAL=1,TEXCOORD_0=2),
indices=3, material=0, mode=4)]),
]
# ノード
nodes = [
Node(mesh=0,rotation=None, scale=scale),
]
# シーン
scene = 0
scenes = [Scene(name='Scene', nodes=[0])]
model = GLTFModel(
asset=asset,
buffers=buffers,
bufferViews=bufferViews,
accessors=accessors,
images=images,
samplers=samplers,
textures=textures,
materials=materials,
meshes=meshes,
nodes=nodes,
scene=scene,
scenes=scenes
)
gltf = GLTF(model=model, resources=resources)
tmp_filename = uuid.uuid4().hex
model_path = f'../tmp/{tmp_filename}.glb'
gltf.export(model_path)
return model_path |