File size: 10,329 Bytes
5d3564f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import io
import numpy as np
from PIL import Image as PIL_Image # gltflibのImageと被るので別名にする。
from PIL import ImageDraw as PIL_ImageDraw # 上記と同じ命名規則にする。
from scipy.spatial import Delaunay
import cv2
import os
import struct
import matplotlib.pyplot as plt
import triangle
import uuid

from gltflib import (
    GLTF, GLTFModel, Asset, Scene, Node, Mesh, Primitive, Attributes, Buffer, BufferView, Image, Texture, TextureInfo, Material, Sampler, Accessor, AccessorType,
    BufferTarget, ComponentType, GLBResource, FileResource, PBRMetallicRoughness)

# Common configuration information
# Parts that are independent of the binary section's offset and size can be predefined.

# Asset
asset=Asset()

# Image
images=[
    Image(mimeType='image/jpeg', bufferView=4),
]

# Sampler
samplers = [Sampler(magFilter=9728, minFilter=9984)] # magFilter:最近傍フィルタリング、minFilter:ミップマップ+最近傍フィルタリング

# Texture
textures = [
    Texture(name='Main',sampler=0,source=0),
]

# Material
materials = [
    Material(
        pbrMetallicRoughness=PBRMetallicRoughness(
            baseColorTexture=TextureInfo(index=0),
            metallicFactor=0,
            roughnessFactor=1
        ),
        name='Material0',
        alphaMode='OPAQUE',
        doubleSided=True
    ),
]

# Mesh
meshes = [
    Mesh(name='Main', primitives=[Primitive(attributes=Attributes(POSITION=0, NORMAL=1,TEXCOORD_0=2),
                                            indices=3, material=0, mode=4)]),
]

# Scene
scene = 0
scenes = [Scene(name='Scene', nodes=[0])]

def create_manhole_model(original_img_bytearray):
    
    # Image
    img = PIL_Image.open(original_img_bytearray).convert('RGB')
    
    # Add edge color space.
    # (edge color is decided at 'Decide edge color' section)
    temp_img = PIL_Image.new('RGB', (img.size[0] + 3, img.size[1] + 3), 'black')
    temp_img.paste(img, (3, 3))
    img = temp_img.copy()

    # Get coordinates of manhole
    ret, mask = cv2.threshold(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2GRAY), 0, 255, cv2.THRESH_OTSU+cv2.THRESH_BINARY_INV)
    edges = cv2.Canny(mask , 50, 150, apertureSize=3)
    circle = cv2.HoughCircles(edges, 
                            cv2.HOUGH_GRADIENT, 1, int(max(img.size)*2), 
                            param1=50, param2=30, minRadius=0, maxRadius=0)[0][0]
    
    coordinate_list = []
    num_polygons = 360
    for i in range(num_polygons):
        coordinate_list.append((
            int(circle[0] + np.cos((i / num_polygons) * (2 * np.pi)) * circle[2]),
            int(circle[1] + np.sin((i / num_polygons) * (2 * np.pi)) * circle[2])
        ))
    coordinate_list = [coordinate_list]

    # Decide edge color
    coordinate_colors = list(map(lambda x: img.getpixel(x), coordinate_list[0]))
    edge_color = tuple(np.mean(np.array(coordinate_colors), axis=0).astype(np.uint8))

    draw = PIL_ImageDraw.Draw(img)
    draw.point(tuple((i, j) for i in range(3) for j in range(3)), fill=edge_color)
    
    # image binary data
    img_ext = "JPEG"
    img_bytearray = io.BytesIO()
    img.save(img_bytearray, format=img_ext, quality=95)
    img_bytearray = img_bytearray.getvalue()
    img_bytelen = len(img_bytearray)

    # calculate scale of 3d model
    scale_factor = np.power(img.size[0] * img.size[1], 0.5)
    scale = (img.size[0] / scale_factor, img.size[1] / scale_factor, 0.4)
    
    # Thickness of manhole
    thickness = 0.2 # manhole

    # Vertex data(POSITION)
    front_vertex_list = []
    back_vertex_list = []
    for coordinates in coordinate_list:
        front_vertices = []
        back_vertices = []
        # Be aware that the Y-axis direction is inverted between images and GLB files
        for coordinate in coordinates:
            front_vertices.append((coordinate[0] * 2 / img.size[0] - 1.0, -(coordinate[1] * 2 / img.size[1] - 1.0), thickness))
            back_vertices.append((coordinate[0] * 2 / img.size[0] - 1.0, -(coordinate[1] * 2 / img.size[1] - 1.0), -thickness))

        front_vertex_list.append(front_vertices)
        back_vertex_list.append(back_vertices)

    vertices = front_vertex_list[0] + back_vertex_list[0]
    vertex_bytearray = bytearray()

    # Set vertices with 'Front+Back' and 'Edge'
    for i in range(2): # first for 'Front+Back', second for 'Edge'
        for vertex in vertices:
            for value in vertex:
                vertex_bytearray.extend(struct.pack('f', value))

    vertex_bytelen = len(vertex_bytearray)
    mins = [min([vertex[i] for vertex in vertices]) for i in range(3)]
    maxs = [max([vertex[i] for vertex in vertices]) for i in range(3)]
    
     # Normal data(NORMAL)
    normals = [( 0.0,  0.0, 1.0)] * len(front_vertex_list[0]) + [( 0.0,  0.0, -1.0)] * len(back_vertex_list[0])

    normal_bytearray = bytearray()

    # Consider not only 'Front+Back' but also 'Edge'
    for i in range(2): # first for 'Front+Back', second for 'Edge'
        for normal in normals:
            for value in normal:
                normal_bytearray.extend(struct.pack('f', value))

    normal_bytelen = len(normal_bytearray)

    # Texture coordinates(TEXCOORD_0)
    texcoord_0s = [
        ((vertex[0] + 1.0) / 2.0, 1.0 - ((vertex[1] + 1.0) / 2.0) ) for vertex in vertices
    ]
    texcoord_0_bytearray = bytearray()

    # 'Front+Back'
    for texcoord_0 in texcoord_0s:
        for value in texcoord_0:
            texcoord_0_bytearray.extend(struct.pack('f', value))
    # 'Edge'
    for texcoord_0 in texcoord_0s:
        for value in texcoord_0:
            texcoord_0_bytearray.extend(struct.pack('f', 0.0))
            
    texcoord_0_bytelen = len(texcoord_0_bytearray)

    # Vertex indices
    polygon = {
        'vertices': np.array(front_vertex_list[0])[:, :2],
        'segments': np.array([( i, (i + 1) % (len(front_vertex_list[0])) ) for i in range(len(front_vertex_list[0]))])
    }
    triangulate_result = triangle.triangulate(polygon, 'p')

    vertex_indices = []
    
    # Front
    vertex_indices.extend(list(np.array(triangulate_result['triangles']).flatten())) 

    # Back
    temp_list = list((np.array(triangulate_result['triangles'])+len(front_vertex_list[0])).flatten())
    # Swap vertex indices to get Back vertex indices from Front vertex indices 
    def swap_elements(lst):
        if len(lst) < 2:
            return lst
        for i in range(len(lst) - 1):
            if i % 3 == 1:
                lst[i], lst[i + 1] = lst[i + 1], lst[i]

        return lst
    
    temp_list = swap_elements(temp_list)
    vertex_indices.extend(temp_list) # Back
    
    # Edge 
    vertex_indices.extend(list(np.array([[len(vertices) + i, 
                                        len(vertices) + (i + 1) % len(front_vertex_list[0]), 
                                        len(vertices) + len(front_vertex_list[0]) + i] 
                                        for i in range(len(front_vertex_list[0]))]).flatten())) 
    vertex_indices.extend(list(np.array([[len(vertices) + len(front_vertex_list[0]) + (i + 1) % len(front_vertex_list[0]), 
                                        len(vertices) + len(front_vertex_list[0]) + i, 
                                        len(vertices) + (i + 1) % len(front_vertex_list[0])] 
                                        for i in range(len(front_vertex_list[0]))]).flatten()))

    vertex_index_bytearray = bytearray()
    for value in vertex_indices:
        vertex_index_bytearray.extend(struct.pack('H', value))
    vertex_index_bytelen = len(vertex_index_bytearray)
    
    # Concatenate binar data
    bytearray_list = [
        vertex_bytearray,
        normal_bytearray,
        texcoord_0_bytearray,
        vertex_index_bytearray,
        img_bytearray,
    ]
    bytelen_list = [
        vertex_bytelen,
        normal_bytelen,
        texcoord_0_bytelen,
        vertex_index_bytelen,
        img_bytelen,
    ]
    bytelen_cumsum_list = list(np.cumsum(bytelen_list))
    bytelen_cumsum_list = list(map(lambda x: int(x), bytelen_cumsum_list))

    all_bytearray = bytearray()
    for temp_bytearray in bytearray_list:
        all_bytearray.extend(temp_bytearray)
    offset_list = [0] + bytelen_cumsum_list # First offset is 0
    offset_list.pop() # Delete the last element
    
    # Resource
    resources = [GLBResource(data=all_bytearray)]
    
    # Buffer
    buffers = [Buffer(byteLength=len(all_bytearray))]

    # BufferView
    bufferViews = [
        BufferView(buffer=0, byteOffset=offset_list[0], byteLength=bytelen_list[0], target=BufferTarget.ARRAY_BUFFER.value),
        BufferView(buffer=0, byteOffset=offset_list[1], byteLength=bytelen_list[1], target=BufferTarget.ARRAY_BUFFER.value),
        BufferView(buffer=0, byteOffset=offset_list[2], byteLength=bytelen_list[2], target=BufferTarget.ARRAY_BUFFER.value),
        BufferView(buffer=0, byteOffset=offset_list[3], byteLength=bytelen_list[3], target=BufferTarget.ELEMENT_ARRAY_BUFFER.value),
        BufferView(buffer=0, byteOffset=offset_list[4], byteLength=bytelen_list[4], target=None),
    ]

    # Accessor
    accessors = [
        Accessor(bufferView=0, componentType=ComponentType.FLOAT.value, count=len(vertices*2), type=AccessorType.VEC3.value, max=maxs, min=mins),
        Accessor(bufferView=1, componentType=ComponentType.FLOAT.value, count=len(normals*2), type=AccessorType.VEC3.value, max=None, min=None),
        Accessor(bufferView=2, componentType=ComponentType.FLOAT.value, count=len(texcoord_0s*2), type=AccessorType.VEC2.value, max=None, min=None),
        Accessor(bufferView=3, componentType=ComponentType.UNSIGNED_SHORT.value, count=len(vertex_indices), type=AccessorType.SCALAR.value, max=None, min=None)
    ]
    
    # Node
    nodes = [
        Node(mesh=0,rotation=None, scale=scale),
    ]
    
    model = GLTFModel(
        asset=asset,
        buffers=buffers,
        bufferViews=bufferViews,
        accessors=accessors,
        images=images,
        samplers=samplers,
        textures=textures,
        materials=materials,
        meshes=meshes,
        nodes=nodes,
        scene=scene,
        scenes=scenes,
    )
    
    gltf = GLTF(model=model, resources=resources)
    
    tmp_filename = uuid.uuid4().hex
    model_path = f'../tmp/{tmp_filename}.glb'

    gltf.export(model_path)
    
    return model_path