Spaces:
Running
Running
File size: 10,329 Bytes
5d3564f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import io
import numpy as np
from PIL import Image as PIL_Image # gltflibのImageと被るので別名にする。
from PIL import ImageDraw as PIL_ImageDraw # 上記と同じ命名規則にする。
from scipy.spatial import Delaunay
import cv2
import os
import struct
import matplotlib.pyplot as plt
import triangle
import uuid
from gltflib import (
GLTF, GLTFModel, Asset, Scene, Node, Mesh, Primitive, Attributes, Buffer, BufferView, Image, Texture, TextureInfo, Material, Sampler, Accessor, AccessorType,
BufferTarget, ComponentType, GLBResource, FileResource, PBRMetallicRoughness)
# Common configuration information
# Parts that are independent of the binary section's offset and size can be predefined.
# Asset
asset=Asset()
# Image
images=[
Image(mimeType='image/jpeg', bufferView=4),
]
# Sampler
samplers = [Sampler(magFilter=9728, minFilter=9984)] # magFilter:最近傍フィルタリング、minFilter:ミップマップ+最近傍フィルタリング
# Texture
textures = [
Texture(name='Main',sampler=0,source=0),
]
# Material
materials = [
Material(
pbrMetallicRoughness=PBRMetallicRoughness(
baseColorTexture=TextureInfo(index=0),
metallicFactor=0,
roughnessFactor=1
),
name='Material0',
alphaMode='OPAQUE',
doubleSided=True
),
]
# Mesh
meshes = [
Mesh(name='Main', primitives=[Primitive(attributes=Attributes(POSITION=0, NORMAL=1,TEXCOORD_0=2),
indices=3, material=0, mode=4)]),
]
# Scene
scene = 0
scenes = [Scene(name='Scene', nodes=[0])]
def create_manhole_model(original_img_bytearray):
# Image
img = PIL_Image.open(original_img_bytearray).convert('RGB')
# Add edge color space.
# (edge color is decided at 'Decide edge color' section)
temp_img = PIL_Image.new('RGB', (img.size[0] + 3, img.size[1] + 3), 'black')
temp_img.paste(img, (3, 3))
img = temp_img.copy()
# Get coordinates of manhole
ret, mask = cv2.threshold(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2GRAY), 0, 255, cv2.THRESH_OTSU+cv2.THRESH_BINARY_INV)
edges = cv2.Canny(mask , 50, 150, apertureSize=3)
circle = cv2.HoughCircles(edges,
cv2.HOUGH_GRADIENT, 1, int(max(img.size)*2),
param1=50, param2=30, minRadius=0, maxRadius=0)[0][0]
coordinate_list = []
num_polygons = 360
for i in range(num_polygons):
coordinate_list.append((
int(circle[0] + np.cos((i / num_polygons) * (2 * np.pi)) * circle[2]),
int(circle[1] + np.sin((i / num_polygons) * (2 * np.pi)) * circle[2])
))
coordinate_list = [coordinate_list]
# Decide edge color
coordinate_colors = list(map(lambda x: img.getpixel(x), coordinate_list[0]))
edge_color = tuple(np.mean(np.array(coordinate_colors), axis=0).astype(np.uint8))
draw = PIL_ImageDraw.Draw(img)
draw.point(tuple((i, j) for i in range(3) for j in range(3)), fill=edge_color)
# image binary data
img_ext = "JPEG"
img_bytearray = io.BytesIO()
img.save(img_bytearray, format=img_ext, quality=95)
img_bytearray = img_bytearray.getvalue()
img_bytelen = len(img_bytearray)
# calculate scale of 3d model
scale_factor = np.power(img.size[0] * img.size[1], 0.5)
scale = (img.size[0] / scale_factor, img.size[1] / scale_factor, 0.4)
# Thickness of manhole
thickness = 0.2 # manhole
# Vertex data(POSITION)
front_vertex_list = []
back_vertex_list = []
for coordinates in coordinate_list:
front_vertices = []
back_vertices = []
# Be aware that the Y-axis direction is inverted between images and GLB files
for coordinate in coordinates:
front_vertices.append((coordinate[0] * 2 / img.size[0] - 1.0, -(coordinate[1] * 2 / img.size[1] - 1.0), thickness))
back_vertices.append((coordinate[0] * 2 / img.size[0] - 1.0, -(coordinate[1] * 2 / img.size[1] - 1.0), -thickness))
front_vertex_list.append(front_vertices)
back_vertex_list.append(back_vertices)
vertices = front_vertex_list[0] + back_vertex_list[0]
vertex_bytearray = bytearray()
# Set vertices with 'Front+Back' and 'Edge'
for i in range(2): # first for 'Front+Back', second for 'Edge'
for vertex in vertices:
for value in vertex:
vertex_bytearray.extend(struct.pack('f', value))
vertex_bytelen = len(vertex_bytearray)
mins = [min([vertex[i] for vertex in vertices]) for i in range(3)]
maxs = [max([vertex[i] for vertex in vertices]) for i in range(3)]
# Normal data(NORMAL)
normals = [( 0.0, 0.0, 1.0)] * len(front_vertex_list[0]) + [( 0.0, 0.0, -1.0)] * len(back_vertex_list[0])
normal_bytearray = bytearray()
# Consider not only 'Front+Back' but also 'Edge'
for i in range(2): # first for 'Front+Back', second for 'Edge'
for normal in normals:
for value in normal:
normal_bytearray.extend(struct.pack('f', value))
normal_bytelen = len(normal_bytearray)
# Texture coordinates(TEXCOORD_0)
texcoord_0s = [
((vertex[0] + 1.0) / 2.0, 1.0 - ((vertex[1] + 1.0) / 2.0) ) for vertex in vertices
]
texcoord_0_bytearray = bytearray()
# 'Front+Back'
for texcoord_0 in texcoord_0s:
for value in texcoord_0:
texcoord_0_bytearray.extend(struct.pack('f', value))
# 'Edge'
for texcoord_0 in texcoord_0s:
for value in texcoord_0:
texcoord_0_bytearray.extend(struct.pack('f', 0.0))
texcoord_0_bytelen = len(texcoord_0_bytearray)
# Vertex indices
polygon = {
'vertices': np.array(front_vertex_list[0])[:, :2],
'segments': np.array([( i, (i + 1) % (len(front_vertex_list[0])) ) for i in range(len(front_vertex_list[0]))])
}
triangulate_result = triangle.triangulate(polygon, 'p')
vertex_indices = []
# Front
vertex_indices.extend(list(np.array(triangulate_result['triangles']).flatten()))
# Back
temp_list = list((np.array(triangulate_result['triangles'])+len(front_vertex_list[0])).flatten())
# Swap vertex indices to get Back vertex indices from Front vertex indices
def swap_elements(lst):
if len(lst) < 2:
return lst
for i in range(len(lst) - 1):
if i % 3 == 1:
lst[i], lst[i + 1] = lst[i + 1], lst[i]
return lst
temp_list = swap_elements(temp_list)
vertex_indices.extend(temp_list) # Back
# Edge
vertex_indices.extend(list(np.array([[len(vertices) + i,
len(vertices) + (i + 1) % len(front_vertex_list[0]),
len(vertices) + len(front_vertex_list[0]) + i]
for i in range(len(front_vertex_list[0]))]).flatten()))
vertex_indices.extend(list(np.array([[len(vertices) + len(front_vertex_list[0]) + (i + 1) % len(front_vertex_list[0]),
len(vertices) + len(front_vertex_list[0]) + i,
len(vertices) + (i + 1) % len(front_vertex_list[0])]
for i in range(len(front_vertex_list[0]))]).flatten()))
vertex_index_bytearray = bytearray()
for value in vertex_indices:
vertex_index_bytearray.extend(struct.pack('H', value))
vertex_index_bytelen = len(vertex_index_bytearray)
# Concatenate binar data
bytearray_list = [
vertex_bytearray,
normal_bytearray,
texcoord_0_bytearray,
vertex_index_bytearray,
img_bytearray,
]
bytelen_list = [
vertex_bytelen,
normal_bytelen,
texcoord_0_bytelen,
vertex_index_bytelen,
img_bytelen,
]
bytelen_cumsum_list = list(np.cumsum(bytelen_list))
bytelen_cumsum_list = list(map(lambda x: int(x), bytelen_cumsum_list))
all_bytearray = bytearray()
for temp_bytearray in bytearray_list:
all_bytearray.extend(temp_bytearray)
offset_list = [0] + bytelen_cumsum_list # First offset is 0
offset_list.pop() # Delete the last element
# Resource
resources = [GLBResource(data=all_bytearray)]
# Buffer
buffers = [Buffer(byteLength=len(all_bytearray))]
# BufferView
bufferViews = [
BufferView(buffer=0, byteOffset=offset_list[0], byteLength=bytelen_list[0], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[1], byteLength=bytelen_list[1], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[2], byteLength=bytelen_list[2], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[3], byteLength=bytelen_list[3], target=BufferTarget.ELEMENT_ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[4], byteLength=bytelen_list[4], target=None),
]
# Accessor
accessors = [
Accessor(bufferView=0, componentType=ComponentType.FLOAT.value, count=len(vertices*2), type=AccessorType.VEC3.value, max=maxs, min=mins),
Accessor(bufferView=1, componentType=ComponentType.FLOAT.value, count=len(normals*2), type=AccessorType.VEC3.value, max=None, min=None),
Accessor(bufferView=2, componentType=ComponentType.FLOAT.value, count=len(texcoord_0s*2), type=AccessorType.VEC2.value, max=None, min=None),
Accessor(bufferView=3, componentType=ComponentType.UNSIGNED_SHORT.value, count=len(vertex_indices), type=AccessorType.SCALAR.value, max=None, min=None)
]
# Node
nodes = [
Node(mesh=0,rotation=None, scale=scale),
]
model = GLTFModel(
asset=asset,
buffers=buffers,
bufferViews=bufferViews,
accessors=accessors,
images=images,
samplers=samplers,
textures=textures,
materials=materials,
meshes=meshes,
nodes=nodes,
scene=scene,
scenes=scenes,
)
gltf = GLTF(model=model, resources=resources)
tmp_filename = uuid.uuid4().hex
model_path = f'../tmp/{tmp_filename}.glb'
gltf.export(model_path)
return model_path |