3dmodelmaker / src /extracted_objects_model.py
ikeda
translate Japanese comments to English
6810bed
raw
history blame
10.4 kB
import io
import numpy as np
from PIL import Image as PIL_Image # Renaming to avoid conflict with Image from gltflib
import cv2
import struct
import triangle
import uuid
from gltflib import (
GLTF, GLTFModel, Asset, Scene, Node, Mesh, Primitive, Attributes, Buffer, BufferView, Image, Texture, TextureInfo, Material, Sampler, Accessor, AccessorType,
BufferTarget, ComponentType, GLBResource, PBRMetallicRoughness)
# Create vertex lists for both the front and back surfaces
def make_front_and_back_vertex_list(coordinate_list, img):
# Front surface vertices
front_vertex_list = []
# Back surface vertices
back_vertex_list = []
for coordinates in coordinate_list:
front_vertices = []
back_vertices = []
# Note that the Y-axis direction is inverted between the image and GLB, so be careful
for coordinate in coordinates:
front_vertices.append((coordinate[0] * 2 / img.size[0] - 1.0, -(coordinate[1] * 2 / img.size[1] - 1.0), 0.2))
back_vertices.append((coordinate[0] * 2 / img.size[0] - 1.0, -(coordinate[1] * 2 / img.size[1] - 1.0), -0.2))
front_vertex_list.append(front_vertices)
back_vertex_list.append(back_vertices)
return front_vertex_list, back_vertex_list
# Creation of various information for the mesh
def make_mesh_data(coordinate_list, img):
front_vertex_list, back_vertex_list = make_front_and_back_vertex_list(coordinate_list, img)
# Vertex data(POSITION)
vertices = []
# List of offset values used when determining vertex indices
front_offset = 0
front_offset_list = []
back_offset_list = []
for front_vertices, back_vertices in zip(front_vertex_list, back_vertex_list):
vertices.extend(front_vertices)
vertices.extend(back_vertices)
back_offset = front_offset + len(front_vertices)
front_offset_list.append(front_offset)
back_offset_list.append(back_offset)
front_offset += len(front_vertices) + len(back_vertices)
# Normal data(NORMAL)
normals = []
for front_vertices, back_vertices in zip(front_vertex_list, back_vertex_list):
normals.extend([( 0.0, 0.0, 1.0)] * len(front_vertices))
normals.extend([( 0.0, 0.0, -1.0)] * len(back_vertices))
# Texture coordinates (TEXCOORD_0)
# The image origin is at the top-left, requiring an inversion of the Y-axis.
texcoord_0s = [((vertex[0] + 1.0) / 2.0, 1.0 - ((vertex[1] + 1.0) / 2.0) ) for vertex in vertices]
# Vertex indices
vertex_indices = []
for front_vertices, back_vertices, front_offset, back_offset \
in zip(front_vertex_list, back_vertex_list, front_offset_list, back_offset_list):
polygon = {
'vertices': np.array(front_vertices)[:, :2],
'segments': np.array([( i, (i + 1) % (len(front_vertices)) ) for i in range(len(front_vertices))]) # Define each edge
}
triangulate_result = triangle.triangulate(polygon, 'p')
vertex_indices.extend(list(np.array(triangulate_result['triangles']+front_offset).flatten())) # Front surface
vertex_indices.extend(list((np.array(triangulate_result['triangles'])+back_offset).flatten())) # Back surface
vertex_indices.extend(list(np.array([[front_offset + i,
front_offset + (i + 1) % len(front_vertices),
back_offset + i]
for i in range(len(front_vertices))]).flatten())) # Side surface 1
vertex_indices.extend(list(np.array([[back_offset + i,
back_offset + (i + 1) % len(back_vertices),
front_offset+ (i + 1) % len(front_vertices)] for i in range(len(front_vertices))]).flatten())) # Side surface 2
return vertices, normals, texcoord_0s, vertex_indices
def create_extracted_objects_model(img_bytearray):
# Retrieve the image
img = PIL_Image.open(img_bytearray).convert('RGB')
img_bytearray = io.BytesIO()
img.save(img_bytearray, format="JPEG", quality=95)
img_bytearray = img_bytearray.getvalue()
img_bytelen = len(img_bytearray)
# Calculate the scale of the 3D model
scale_factor = np.power(img.size[0] * img.size[1], 0.5)
scale = (img.size[0] / scale_factor, img.size[1] / scale_factor, 0.4)
# Retrieve vertices of the main part of the image
base_color = img.getpixel((0, 0))
mask = PIL_Image.new('RGB', img.size)
for i in range(img.size[0]):
for j in range(img.size[1]):
if base_color == img.getpixel((i, j)):
mask.putpixel((i, j), (0, 0, 0))
else:
mask.putpixel((i, j), (255, 255, 255))
opening = cv2.morphologyEx(np.array(mask), cv2.MORPH_OPEN, kernel=np.ones((15, 15),np.uint8))
contours, _ = cv2.findContours(cv2.cvtColor(np.array(opening), cv2.COLOR_RGB2GRAY), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
coordinate_list = []
for contour in contours:
coordinates = []
for [[x, y]] in contour:
coordinates.append((x, y))
coordinate_list.append(coordinates)
# Creation of associated data for the mesh
vertices, normals, texcoord_0s, vertex_indices = make_mesh_data(coordinate_list, img)
# Vertex data(POSITION)
vertex_bytearray = bytearray()
for vertex in vertices:
for value in vertex:
vertex_bytearray.extend(struct.pack('f', value))
vertex_bytelen = len(vertex_bytearray)
mins = [min([vertex[i] for vertex in vertices]) for i in range(3)]
maxs = [max([vertex[i] for vertex in vertices]) for i in range(3)]
# Normal data(NORMAL)
normal_bytearray = bytearray()
for normal in normals:
for value in normal:
normal_bytearray.extend(struct.pack('f', value))
normal_bytelen = len(normal_bytearray)
# Texture coordinates(TEXCOORD_0)
texcoord_0s = [
((vertex[0] + 1.0) / 2.0, 1.0 - ((vertex[1] + 1.0) / 2.0) ) for vertex in vertices
]
texcoord_0_bytearray = bytearray()
for texcoord_0 in texcoord_0s:
for value in texcoord_0:
texcoord_0_bytearray.extend(struct.pack('f', value))
texcoord_0_bytelen = len(texcoord_0_bytearray)
# Vertex indices
vertex_index_bytearray = bytearray()
for value in vertex_indices:
vertex_index_bytearray.extend(struct.pack('H', value))
vertex_index_bytelen = len(vertex_index_bytearray)
# Concatenation of the binary data section
bytearray_list = [
vertex_bytearray,
normal_bytearray,
texcoord_0_bytearray,
vertex_index_bytearray,
img_bytearray,
]
bytelen_list = [
vertex_bytelen,
normal_bytelen,
texcoord_0_bytelen,
vertex_index_bytelen,
img_bytelen,
]
bytelen_cumsum_list = list(np.cumsum(bytelen_list))
bytelen_cumsum_list = list(map(lambda x: int(x), bytelen_cumsum_list))
all_bytearray = bytearray()
for temp_bytearray in bytearray_list:
all_bytearray.extend(temp_bytearray)
offset_list = [0] + bytelen_cumsum_list # The first offset is 0
offset_list.pop() # 末尾を削除
# GLBResource
resources = [GLBResource(data=all_bytearray)]
# Asset
asset=Asset()
# Buffer
buffers = [Buffer(byteLength=len(all_bytearray))]
# BufferView
bufferViews = [
BufferView(buffer=0, byteOffset=offset_list[0], byteLength=bytelen_list[0], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[1], byteLength=bytelen_list[1], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[2], byteLength=bytelen_list[2], target=BufferTarget.ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[3], byteLength=bytelen_list[3], target=BufferTarget.ELEMENT_ARRAY_BUFFER.value),
BufferView(buffer=0, byteOffset=offset_list[4], byteLength=bytelen_list[4], target=None),
]
# Accessor
accessors = [
Accessor(bufferView=0, componentType=ComponentType.FLOAT.value, count=len(vertices), type=AccessorType.VEC3.value, max=maxs, min=mins),
Accessor(bufferView=1, componentType=ComponentType.FLOAT.value, count=len(normals), type=AccessorType.VEC3.value, max=None, min=None),
Accessor(bufferView=2, componentType=ComponentType.FLOAT.value, count=len(texcoord_0s), type=AccessorType.VEC2.value, max=None, min=None),
Accessor(bufferView=3, componentType=ComponentType.UNSIGNED_SHORT.value, count=len(vertex_indices), type=AccessorType.SCALAR.value, max=None, min=None)
]
# Image
images=[
Image(mimeType='image/jpeg', bufferView=4),
]
# Sampler
samplers = [Sampler(magFilter=9728, minFilter=9984)] # magFilter:最近傍フィルタリング、minFilter:ミップマップ+最近傍フィルタリング
# Texture
textures = [
Texture(name='Main',sampler=0,source=0),
]
# Material
materials = [
Material(
pbrMetallicRoughness=PBRMetallicRoughness(
baseColorTexture=TextureInfo(index=0),
metallicFactor=0,
roughnessFactor=1
),
name='Material0',
alphaMode='OPAQUE',
doubleSided=True
),
]
# Mesh
meshes = [
Mesh(name='Main', primitives=[Primitive(attributes=Attributes(POSITION=0, NORMAL=1,TEXCOORD_0=2),
indices=3, material=0, mode=4)]),
]
# Node
nodes = [
Node(mesh=0,rotation=None, scale=scale),
]
# Scene
scene = 0
scenes = [Scene(name='Scene', nodes=[0])]
# GLTFModel
model = GLTFModel(
asset=asset,
buffers=buffers,
bufferViews=bufferViews,
accessors=accessors,
images=images,
samplers=samplers,
textures=textures,
materials=materials,
meshes=meshes,
nodes=nodes,
scene=scene,
scenes=scenes
)
gltf = GLTF(model=model, resources=resources)
tmp_filename = uuid.uuid4().hex
model_path = f'../tmp/{tmp_filename}.glb'
gltf.export(model_path)
return model_path