Nikhil0987 commited on
Commit
90501fb
·
1 Parent(s): 1c7de53
Files changed (3) hide show
  1. FeaturesExtractor.py +52 -0
  2. det.py +68 -0
  3. modeltrainer.py +76 -0
FeaturesExtractor.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from sklearn import preprocessing
3
+ from scipy.io.wavfile import read
4
+ from python_speech_features import mfcc
5
+ from python_speech_features import delta
6
+
7
+
8
+ class FeaturesExtractor:
9
+ def __init__(self):
10
+ pass
11
+
12
+ def extract_features(self, audio_path):
13
+ """
14
+ Extract voice features including the Mel Frequency Cepstral Coefficient (MFCC)
15
+ from an audio using the python_speech_features module, performs Cepstral Mean
16
+ Normalization (CMS) and combine it with MFCC deltas and the MFCC double
17
+ deltas.
18
+
19
+ Args:
20
+ audio_path (str) : path to wave file without silent moments.
21
+ Returns:
22
+ (array) : Extracted features matrix.
23
+ """
24
+ rate, audio = read(audio_path)
25
+ mfcc_feature = mfcc(# The audio signal from which to compute features.
26
+ audio,
27
+ # The samplerate of the signal we are working with.
28
+ rate,
29
+ # The length of the analysis window in seconds.
30
+ # Default is 0.025s (25 milliseconds)
31
+ winlen = 0.05,
32
+ # The step between successive windows in seconds.
33
+ # Default is 0.01s (10 milliseconds)
34
+ winstep = 0.01,
35
+ # The number of cepstrum to return.
36
+ # Default 13.
37
+ numcep = 5,
38
+ # The number of filters in the filterbank.
39
+ # Default is 26.
40
+ nfilt = 30,
41
+ # The FFT size. Default is 512.
42
+ nfft = 512,
43
+ # If true, the zeroth cepstral coefficient is replaced
44
+ # with the log of the total frame energy.
45
+ appendEnergy = True)
46
+
47
+
48
+ mfcc_feature = preprocessing.scale(mfcc_feature)
49
+ deltas = delta(mfcc_feature, 2)
50
+ double_deltas = delta(deltas, 2)
51
+ combined = np.hstack((mfcc_feature, deltas, double_deltas))
52
+ return combined
det.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pickle
3
+ import warnings
4
+ import numpy as np
5
+ from FeaturesExtractor import FeaturesExtractor
6
+
7
+ warnings.filterwarnings("ignore")
8
+
9
+
10
+ class GenderIdentifier:
11
+
12
+ def __init__(self, females_files_path, males_files_path, females_model_path, males_model_path):
13
+ self.females_training_path = females_files_path
14
+ self.males_training_path = males_files_path
15
+ self.error = 0
16
+ self.total_sample = 0
17
+ self.features_extractor = FeaturesExtractor()
18
+ # load models
19
+ self.females_gmm = pickle.load(open(females_model_path, 'rb'))
20
+ self.males_gmm = pickle.load(open(males_model_path, 'rb'))
21
+
22
+ def process(self):
23
+ files = self.get_file_paths(self.females_training_path, self.males_training_path)
24
+ # read the test directory and get the list of test audio files
25
+ for file in files:
26
+ self.total_sample += 1
27
+ print("%10s %8s %1s" % ("--> TESTING", ":", os.path.basename(file)))
28
+
29
+ vector = self.features_extractor.extract_features(file)
30
+ winner = self.identify_gender(vector)
31
+ expected_gender = file.split("/")[1][:-1]
32
+
33
+ print("%10s %6s %1s" % ("+ EXPECTATION",":", expected_gender))
34
+ print("%10s %3s %1s" % ("+ IDENTIFICATION", ":", winner))
35
+
36
+ if winner != expected_gender: self.error += 1
37
+ print("----------------------------------------------------")
38
+
39
+ accuracy = ( float(self.total_sample - self.error) / float(self.total_sample) ) * 100
40
+ accuracy_msg = "*** Accuracy = " + str(round(accuracy, 3)) + "% ***"
41
+ print(accuracy_msg)
42
+
43
+ def get_file_paths(self, females_training_path, males_training_path):
44
+ # get file paths
45
+ females = [ os.path.join(females_training_path, f) for f in os.listdir(females_training_path) ]
46
+ males = [ os.path.join(males_training_path, f) for f in os.listdir(males_training_path) ]
47
+ files = females + males
48
+ return files
49
+
50
+ def identify_gender(self, vector):
51
+ # female hypothesis scoring
52
+ is_female_scores = np.array(self.females_gmm.score(vector))
53
+ is_female_log_likelihood = is_female_scores.sum()
54
+ # male hypothesis scoring
55
+ is_male_scores = np.array(self.males_gmm.score(vector))
56
+ is_male_log_likelihood = is_male_scores.sum()
57
+
58
+ print("%10s %5s %1s" % ("+ FEMALE SCORE",":", str(round(is_female_log_likelihood, 3))))
59
+ print("%10s %7s %1s" % ("+ MALE SCORE", ":", str(round(is_male_log_likelihood,3))))
60
+
61
+ if is_male_log_likelihood > is_female_log_likelihood: winner = "male"
62
+ else : winner = "female"
63
+ return winner
64
+
65
+
66
+ if __name__== "__main__":
67
+ gender_identifier = GenderIdentifier("TestingData/females", "TestingData/males", "females.gmm", "males.gmm")
68
+ gender_identifier.process()
modeltrainer.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pickle
3
+ import warnings
4
+ import numpy as np
5
+ from sklearn.mixture import GMM
6
+ from FeaturesExtractor import FeaturesExtractor
7
+
8
+ warnings.filterwarnings("ignore")
9
+
10
+
11
+ class ModelsTrainer:
12
+
13
+ def __init__(self, females_files_path, males_files_path):
14
+ self.females_training_path = females_files_path
15
+ self.males_training_path = males_files_path
16
+ self.features_extractor = FeaturesExtractor()
17
+
18
+ def process(self):
19
+ females, males = self.get_file_paths(self.females_training_path,
20
+ self.males_training_path)
21
+ # collect voice features
22
+ female_voice_features = self.collect_features(females)
23
+ male_voice_features = self.collect_features(males)
24
+ # generate gaussian mixture models
25
+ females_gmm = GMM(n_components = 16, n_iter = 200, covariance_type='diag', n_init = 3)
26
+ males_gmm = GMM(n_components = 16, n_iter = 200, covariance_type='diag', n_init = 3)
27
+ # fit features to models
28
+ females_gmm.fit(female_voice_features)
29
+ males_gmm.fit(male_voice_features)
30
+ # save models
31
+ self.save_gmm(females_gmm, "females")
32
+ self.save_gmm(males_gmm, "males")
33
+
34
+ def get_file_paths(self, females_training_path, males_training_path):
35
+ # get file paths
36
+ females = [ os.path.join(females_training_path, f) for f in os.listdir(females_training_path) ]
37
+ males = [ os.path.join(males_training_path, f) for f in os.listdir(males_training_path) ]
38
+ return females, males
39
+
40
+ def collect_features(self, files):
41
+ """
42
+ Collect voice features from various speakers of the same gender.
43
+
44
+ Args:
45
+ files (list) : List of voice file paths.
46
+
47
+ Returns:
48
+ (array) : Extracted features matrix.
49
+ """
50
+ features = np.asarray(())
51
+ # extract features for each speaker
52
+ for file in files:
53
+ print("%5s %10s" % ("PROCESSNG ", file))
54
+ # extract MFCC & delta MFCC features from audio
55
+ vector = self.features_extractor.extract_features(file)
56
+ # stack the features
57
+ if features.size == 0: features = vector
58
+ else: features = np.vstack((features, vector))
59
+ return features
60
+
61
+ def save_gmm(self, gmm, name):
62
+ """ Save Gaussian mixture model using pickle.
63
+
64
+ Args:
65
+ gmm : Gaussian mixture model.
66
+ name (str) : File name.
67
+ """
68
+ filename = name + ".gmm"
69
+ with open(filename, 'wb') as gmm_file:
70
+ pickle.dump(gmm, gmm_file)
71
+ print ("%5s %10s" % ("SAVING", filename,))
72
+
73
+
74
+ if __name__== "__main__":
75
+ models_trainer = ModelsTrainer("TrainingData/females", "TrainingData/males")
76
+ models_trainer.process()