Nikhil2411 commited on
Commit
f7cf168
·
1 Parent(s): ac61cde
Files changed (2) hide show
  1. app.py +43 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModel, AutoProcessor
3
+ import torch
4
+ import cv2
5
+
6
+ # Load the model and processor from Hugging Face Hub
7
+ model_name = "OpenGVLab/InternVideo2_5_Chat_8B" # Replace with the correct model name
8
+ model = AutoModel.from_pretrained(model_name,trust_remote_code=True)
9
+ processor = AutoProcessor.from_pretrained(model_name,trust_remote_code=True)
10
+
11
+ def predict(video_path):
12
+ # Load the video
13
+ video = cv2.VideoCapture(video_path)
14
+ frames = []
15
+ while True:
16
+ ret, frame = video.read()
17
+ if not ret:
18
+ break
19
+ frames.append(frame)
20
+ video.release()
21
+
22
+ # Preprocess the frames
23
+ inputs = processor(frames, return_tensors="pt")
24
+
25
+ # Perform inference
26
+ with torch.no_grad():
27
+ outputs = model(**inputs)
28
+
29
+ # Process the outputs (replace this with your actual logic)
30
+ prediction = "Hello (Example Prediction)"
31
+ return prediction
32
+
33
+ # Create Gradio interface
34
+ iface = gr.Interface(
35
+ fn=predict,
36
+ inputs=gr.Video(label="Upload Video"),
37
+ outputs=gr.Textbox(label="Prediction"),
38
+ title="Indian Sign Language Recognition",
39
+ description="Upload a video to recognize Indian Sign Language gestures.",
40
+ )
41
+
42
+ # Launch the interface
43
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ transformers
2
+ torch
3
+ torchvision
4
+ opencv-python
5
+ gradio