Mikhail Nikolaev commited on
Commit
c14a211
Β·
1 Parent(s): 1d27d36

Add application file

Browse files
Files changed (1) hide show
  1. app.py +46 -0
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+
5
+ model_id = "t-tech/T-pro-it-1.0"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
7
+ model = AutoModelForCausalLM.from_pretrained(
8
+ model_id,
9
+ torch_dtype="auto",
10
+ device_map="auto"
11
+ )
12
+
13
+ def generate_response(prompt):
14
+ messages = [
15
+ {"role": "system", "content": "Π’Ρ‹ T-pro, Π²ΠΈΡ€Ρ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΉ ассистСнт Π² Π’-Π’Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ. Ввоя Π·Π°Π΄Π°Ρ‡Π° - Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ΠΌ Π΄ΠΈΠ°Π»ΠΎΠ³ΠΎΠ²Ρ‹ΠΌ ассистСнтом."},
16
+ {"role": "user", "content": prompt}
17
+ ]
18
+
19
+ text = tokenizer.apply_chat_template(
20
+ messages,
21
+ tokenize=False,
22
+ add_generation_prompt=True
23
+ )
24
+
25
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
26
+ generated_ids = model.generate(
27
+ **model_inputs,
28
+ max_new_tokens=256
29
+ )
30
+
31
+ generated_ids = [
32
+ output_ids[len(input_ids):]
33
+ for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
34
+ ]
35
+
36
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
37
+ return response
38
+
39
+ interface = gr.Interface(
40
+ fn=generate_response,
41
+ inputs="text",
42
+ outputs="text",
43
+ title="T-pro API"
44
+ )
45
+
46
+ interface.launch()