Spaces:
Runtime error
Runtime error
File size: 15,047 Bytes
ad93086 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import os
import torch
import logging
import importlib
import backend.args
import huggingface_guess
from diffusers import DiffusionPipeline
from transformers import modeling_utils
from backend import memory_management
from backend.utils import read_arbitrary_config, load_torch_file, beautiful_print_gguf_state_dict_statics
from backend.state_dict import try_filter_state_dict, load_state_dict
from backend.operations import using_forge_operations
from backend.nn.vae import IntegratedAutoencoderKL
from backend.nn.clip import IntegratedCLIP
from backend.nn.unet import IntegratedUNet2DConditionModel
from backend.diffusion_engine.sd15 import StableDiffusion
from backend.diffusion_engine.sd20 import StableDiffusion2
from backend.diffusion_engine.sdxl import StableDiffusionXL
from backend.diffusion_engine.flux import Flux
possible_models = [StableDiffusion, StableDiffusion2, StableDiffusionXL, Flux]
logging.getLogger("diffusers").setLevel(logging.ERROR)
dir_path = os.path.dirname(__file__)
def load_huggingface_component(guess, component_name, lib_name, cls_name, repo_path, state_dict):
config_path = os.path.join(repo_path, component_name)
if component_name in ['feature_extractor', 'safety_checker']:
return None
if lib_name in ['transformers', 'diffusers']:
if component_name in ['scheduler']:
cls = getattr(importlib.import_module(lib_name), cls_name)
return cls.from_pretrained(os.path.join(repo_path, component_name))
if component_name.startswith('tokenizer'):
cls = getattr(importlib.import_module(lib_name), cls_name)
comp = cls.from_pretrained(os.path.join(repo_path, component_name))
comp._eventual_warn_about_too_long_sequence = lambda *args, **kwargs: None
return comp
if cls_name in ['AutoencoderKL']:
assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have VAE state dict!'
config = IntegratedAutoencoderKL.load_config(config_path)
with using_forge_operations(device=memory_management.cpu, dtype=memory_management.vae_dtype()):
model = IntegratedAutoencoderKL.from_config(config)
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in state_dict.keys(): #diffusers format
state_dict = huggingface_guess.diffusers_convert.convert_vae_state_dict(state_dict)
load_state_dict(model, state_dict, ignore_start='loss.')
return model
if component_name.startswith('text_encoder') and cls_name in ['CLIPTextModel', 'CLIPTextModelWithProjection']:
assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have CLIP state dict!'
from transformers import CLIPTextConfig, CLIPTextModel
config = CLIPTextConfig.from_pretrained(config_path)
to_args = dict(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype())
with modeling_utils.no_init_weights():
with using_forge_operations(**to_args, manual_cast_enabled=True):
model = IntegratedCLIP(CLIPTextModel, config, add_text_projection=True).to(**to_args)
load_state_dict(model, state_dict, ignore_errors=[
'transformer.text_projection.weight',
'transformer.text_model.embeddings.position_ids',
'logit_scale'
], log_name=cls_name)
return model
if cls_name == 'T5EncoderModel':
assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have T5 state dict!'
from backend.nn.t5 import IntegratedT5
config = read_arbitrary_config(config_path)
storage_dtype = memory_management.text_encoder_dtype()
state_dict_dtype = memory_management.state_dict_dtype(state_dict)
if state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, 'nf4', 'fp4', 'gguf']:
print(f'Using Detected T5 Data Type: {state_dict_dtype}')
storage_dtype = state_dict_dtype
if state_dict_dtype in ['nf4', 'fp4', 'gguf']:
print(f'Using pre-quant state dict!')
if state_dict_dtype in ['gguf']:
beautiful_print_gguf_state_dict_statics(state_dict)
else:
print(f'Using Default T5 Data Type: {storage_dtype}')
if storage_dtype in ['nf4', 'fp4', 'gguf']:
with modeling_utils.no_init_weights():
with using_forge_operations(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype(), manual_cast_enabled=False, bnb_dtype=storage_dtype):
model = IntegratedT5(config)
else:
with modeling_utils.no_init_weights():
with using_forge_operations(device=memory_management.cpu, dtype=storage_dtype, manual_cast_enabled=True):
model = IntegratedT5(config)
load_state_dict(model, state_dict, log_name=cls_name, ignore_errors=['transformer.encoder.embed_tokens.weight', 'logit_scale'])
return model
if cls_name in ['UNet2DConditionModel', 'FluxTransformer2DModel']:
assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have model state dict!'
model_loader = None
if cls_name == 'UNet2DConditionModel':
model_loader = lambda c: IntegratedUNet2DConditionModel.from_config(c)
if cls_name == 'FluxTransformer2DModel':
from backend.nn.flux import IntegratedFluxTransformer2DModel
model_loader = lambda c: IntegratedFluxTransformer2DModel(**c)
unet_config = guess.unet_config.copy()
state_dict_parameters = memory_management.state_dict_parameters(state_dict)
state_dict_dtype = memory_management.state_dict_dtype(state_dict)
storage_dtype = memory_management.unet_dtype(model_params=state_dict_parameters, supported_dtypes=guess.supported_inference_dtypes)
unet_storage_dtype_overwrite = backend.args.dynamic_args.get('forge_unet_storage_dtype')
if unet_storage_dtype_overwrite is not None:
storage_dtype = unet_storage_dtype_overwrite
elif state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, 'nf4', 'fp4', 'gguf']:
print(f'Using Detected UNet Type: {state_dict_dtype}')
storage_dtype = state_dict_dtype
if state_dict_dtype in ['nf4', 'fp4', 'gguf']:
print(f'Using pre-quant state dict!')
if state_dict_dtype in ['gguf']:
beautiful_print_gguf_state_dict_statics(state_dict)
load_device = memory_management.get_torch_device()
computation_dtype = memory_management.get_computation_dtype(load_device, parameters=state_dict_parameters, supported_dtypes=guess.supported_inference_dtypes)
offload_device = memory_management.unet_offload_device()
if storage_dtype in ['nf4', 'fp4', 'gguf']:
initial_device = memory_management.unet_inital_load_device(parameters=state_dict_parameters, dtype=computation_dtype)
with using_forge_operations(device=initial_device, dtype=computation_dtype, manual_cast_enabled=False, bnb_dtype=storage_dtype):
model = model_loader(unet_config)
else:
initial_device = memory_management.unet_inital_load_device(parameters=state_dict_parameters, dtype=storage_dtype)
need_manual_cast = storage_dtype != computation_dtype
to_args = dict(device=initial_device, dtype=storage_dtype)
with using_forge_operations(**to_args, manual_cast_enabled=need_manual_cast):
model = model_loader(unet_config).to(**to_args)
load_state_dict(model, state_dict)
if hasattr(model, '_internal_dict'):
model._internal_dict = unet_config
else:
model.config = unet_config
model.storage_dtype = storage_dtype
model.computation_dtype = computation_dtype
model.load_device = load_device
model.initial_device = initial_device
model.offload_device = offload_device
return model
print(f'Skipped: {component_name} = {lib_name}.{cls_name}')
return None
def replace_state_dict(sd, asd, guess):
vae_key_prefix = guess.vae_key_prefix[0]
text_encoder_key_prefix = guess.text_encoder_key_prefix[0]
if 'enc.blk.0.attn_k.weight' in asd:
wierd_t5_format_from_city96 = {
"enc.": "encoder.",
".blk.": ".block.",
"token_embd": "shared",
"output_norm": "final_layer_norm",
"attn_q": "layer.0.SelfAttention.q",
"attn_k": "layer.0.SelfAttention.k",
"attn_v": "layer.0.SelfAttention.v",
"attn_o": "layer.0.SelfAttention.o",
"attn_norm": "layer.0.layer_norm",
"attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
"ffn_up": "layer.1.DenseReluDense.wi_1",
"ffn_down": "layer.1.DenseReluDense.wo",
"ffn_gate": "layer.1.DenseReluDense.wi_0",
"ffn_norm": "layer.1.layer_norm",
}
wierd_t5_pre_quant_keys_from_city96 = ['shared.weight']
asd_new = {}
for k, v in asd.items():
for s, d in wierd_t5_format_from_city96.items():
k = k.replace(s, d)
asd_new[k] = v
for k in wierd_t5_pre_quant_keys_from_city96:
asd_new[k] = asd_new[k].dequantize_as_pytorch_parameter()
asd.clear()
asd = asd_new
if "decoder.conv_in.weight" in asd:
keys_to_delete = [k for k in sd if k.startswith(vae_key_prefix)]
for k in keys_to_delete:
del sd[k]
for k, v in asd.items():
sd[vae_key_prefix + k] = v
if 'text_model.encoder.layers.0.layer_norm1.weight' in asd:
keys_to_delete = [k for k in sd if k.startswith(f"{text_encoder_key_prefix}clip_l.")]
for k in keys_to_delete:
del sd[k]
for k, v in asd.items():
sd[f"{text_encoder_key_prefix}clip_l.transformer.{k}"] = v
if 'encoder.block.0.layer.0.SelfAttention.k.weight' in asd:
keys_to_delete = [k for k in sd if k.startswith(f"{text_encoder_key_prefix}t5xxl.")]
for k in keys_to_delete:
del sd[k]
for k, v in asd.items():
sd[f"{text_encoder_key_prefix}t5xxl.transformer.{k}"] = v
return sd
def preprocess_state_dict(sd):
if any("double_block" in k for k in sd.keys()):
if not any(k.startswith("model.diffusion_model") for k in sd.keys()):
sd = {f"model.diffusion_model.{k}": v for k, v in sd.items()}
return sd
def split_state_dict(sd, additional_state_dicts: list = None):
sd = load_torch_file(sd)
sd = preprocess_state_dict(sd)
guess = huggingface_guess.guess(sd)
if isinstance(additional_state_dicts, list):
for asd in additional_state_dicts:
asd = load_torch_file(asd)
sd = replace_state_dict(sd, asd, guess)
guess.clip_target = guess.clip_target(sd)
guess.model_type = guess.model_type(sd)
guess.ztsnr = 'ztsnr' in sd
state_dict = {
guess.unet_target: try_filter_state_dict(sd, guess.unet_key_prefix),
guess.vae_target: try_filter_state_dict(sd, guess.vae_key_prefix)
}
sd = guess.process_clip_state_dict(sd)
for k, v in guess.clip_target.items():
state_dict[v] = try_filter_state_dict(sd, [k + '.'])
state_dict['ignore'] = sd
print_dict = {k: len(v) for k, v in state_dict.items()}
print(f'StateDict Keys: {print_dict}')
del state_dict['ignore']
return state_dict, guess
@torch.inference_mode()
def forge_loader(sd, additional_state_dicts=None):
try:
state_dicts, estimated_config = split_state_dict(sd, additional_state_dicts=additional_state_dicts)
except:
raise ValueError('Failed to recognize model type!')
repo_name = estimated_config.huggingface_repo
local_path = os.path.join(dir_path, 'huggingface', repo_name)
config: dict = DiffusionPipeline.load_config(local_path)
huggingface_components = {}
for component_name, v in config.items():
if isinstance(v, list) and len(v) == 2:
lib_name, cls_name = v
component_sd = state_dicts.get(component_name, None)
component = load_huggingface_component(estimated_config, component_name, lib_name, cls_name, local_path, component_sd)
if component_sd is not None:
del state_dicts[component_name]
if component is not None:
huggingface_components[component_name] = component
yaml_config = None
yaml_config_prediction_type = None
try:
import yaml
from pathlib import Path
config_filename = os.path.splitext(sd)[0] + '.yaml'
if Path(config_filename).is_file():
with open(config_filename, 'r') as stream:
yaml_config = yaml.safe_load(stream)
except ImportError:
pass
# Fix Huggingface prediction type using .yaml config or estimated config detection
prediction_types = {
'EPS': 'epsilon',
'V_PREDICTION': 'v_prediction',
'EDM': 'edm',
}
has_prediction_type = 'scheduler' in huggingface_components and hasattr(huggingface_components['scheduler'], 'config') and 'prediction_type' in huggingface_components['scheduler'].config
if yaml_config is not None:
yaml_config_prediction_type: str = (
yaml_config.get('model', {}).get('params', {}).get('parameterization', '')
or yaml_config.get('model', {}).get('params', {}).get('denoiser_config', {}).get('params', {}).get('scaling_config', {}).get('target', '')
)
if yaml_config_prediction_type == 'v' or yaml_config_prediction_type.endswith(".VScaling"):
yaml_config_prediction_type = 'v_prediction'
else:
# Use estimated prediction config if no suitable prediction type found
yaml_config_prediction_type = ''
if has_prediction_type:
if yaml_config_prediction_type:
huggingface_components['scheduler'].config.prediction_type = yaml_config_prediction_type
else:
huggingface_components['scheduler'].config.prediction_type = prediction_types.get(estimated_config.model_type.name, huggingface_components['scheduler'].config.prediction_type)
for M in possible_models:
if any(isinstance(estimated_config, x) for x in M.matched_guesses):
return M(estimated_config=estimated_config, huggingface_components=huggingface_components)
print('Failed to recognize model type!')
return None
|