File size: 15,047 Bytes
ad93086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import torch
import logging
import importlib

import backend.args
import huggingface_guess

from diffusers import DiffusionPipeline
from transformers import modeling_utils

from backend import memory_management
from backend.utils import read_arbitrary_config, load_torch_file, beautiful_print_gguf_state_dict_statics
from backend.state_dict import try_filter_state_dict, load_state_dict
from backend.operations import using_forge_operations
from backend.nn.vae import IntegratedAutoencoderKL
from backend.nn.clip import IntegratedCLIP
from backend.nn.unet import IntegratedUNet2DConditionModel

from backend.diffusion_engine.sd15 import StableDiffusion
from backend.diffusion_engine.sd20 import StableDiffusion2
from backend.diffusion_engine.sdxl import StableDiffusionXL
from backend.diffusion_engine.flux import Flux


possible_models = [StableDiffusion, StableDiffusion2, StableDiffusionXL, Flux]


logging.getLogger("diffusers").setLevel(logging.ERROR)
dir_path = os.path.dirname(__file__)


def load_huggingface_component(guess, component_name, lib_name, cls_name, repo_path, state_dict):
    config_path = os.path.join(repo_path, component_name)

    if component_name in ['feature_extractor', 'safety_checker']:
        return None

    if lib_name in ['transformers', 'diffusers']:
        if component_name in ['scheduler']:
            cls = getattr(importlib.import_module(lib_name), cls_name)
            return cls.from_pretrained(os.path.join(repo_path, component_name))
        if component_name.startswith('tokenizer'):
            cls = getattr(importlib.import_module(lib_name), cls_name)
            comp = cls.from_pretrained(os.path.join(repo_path, component_name))
            comp._eventual_warn_about_too_long_sequence = lambda *args, **kwargs: None
            return comp
        if cls_name in ['AutoencoderKL']:
            assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have VAE state dict!'

            config = IntegratedAutoencoderKL.load_config(config_path)

            with using_forge_operations(device=memory_management.cpu, dtype=memory_management.vae_dtype()):
                model = IntegratedAutoencoderKL.from_config(config)

            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in state_dict.keys(): #diffusers format
                state_dict = huggingface_guess.diffusers_convert.convert_vae_state_dict(state_dict)
            load_state_dict(model, state_dict, ignore_start='loss.')
            return model
        if component_name.startswith('text_encoder') and cls_name in ['CLIPTextModel', 'CLIPTextModelWithProjection']:
            assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have CLIP state dict!'

            from transformers import CLIPTextConfig, CLIPTextModel
            config = CLIPTextConfig.from_pretrained(config_path)

            to_args = dict(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype())

            with modeling_utils.no_init_weights():
                with using_forge_operations(**to_args, manual_cast_enabled=True):
                    model = IntegratedCLIP(CLIPTextModel, config, add_text_projection=True).to(**to_args)

            load_state_dict(model, state_dict, ignore_errors=[
                'transformer.text_projection.weight',
                'transformer.text_model.embeddings.position_ids',
                'logit_scale'
            ], log_name=cls_name)

            return model
        if cls_name == 'T5EncoderModel':
            assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have T5 state dict!'

            from backend.nn.t5 import IntegratedT5
            config = read_arbitrary_config(config_path)

            storage_dtype = memory_management.text_encoder_dtype()
            state_dict_dtype = memory_management.state_dict_dtype(state_dict)

            if state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, 'nf4', 'fp4', 'gguf']:
                print(f'Using Detected T5 Data Type: {state_dict_dtype}')
                storage_dtype = state_dict_dtype
                if state_dict_dtype in ['nf4', 'fp4', 'gguf']:
                    print(f'Using pre-quant state dict!')
                    if state_dict_dtype in ['gguf']:
                        beautiful_print_gguf_state_dict_statics(state_dict)
            else:
                print(f'Using Default T5 Data Type: {storage_dtype}')

            if storage_dtype in ['nf4', 'fp4', 'gguf']:
                with modeling_utils.no_init_weights():
                    with using_forge_operations(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype(), manual_cast_enabled=False, bnb_dtype=storage_dtype):
                        model = IntegratedT5(config)
            else:
                with modeling_utils.no_init_weights():
                    with using_forge_operations(device=memory_management.cpu, dtype=storage_dtype, manual_cast_enabled=True):
                        model = IntegratedT5(config)

            load_state_dict(model, state_dict, log_name=cls_name, ignore_errors=['transformer.encoder.embed_tokens.weight', 'logit_scale'])

            return model
        if cls_name in ['UNet2DConditionModel', 'FluxTransformer2DModel']:
            assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have model state dict!'

            model_loader = None
            if cls_name == 'UNet2DConditionModel':
                model_loader = lambda c: IntegratedUNet2DConditionModel.from_config(c)
            if cls_name == 'FluxTransformer2DModel':
                from backend.nn.flux import IntegratedFluxTransformer2DModel
                model_loader = lambda c: IntegratedFluxTransformer2DModel(**c)

            unet_config = guess.unet_config.copy()
            state_dict_parameters = memory_management.state_dict_parameters(state_dict)
            state_dict_dtype = memory_management.state_dict_dtype(state_dict)

            storage_dtype = memory_management.unet_dtype(model_params=state_dict_parameters, supported_dtypes=guess.supported_inference_dtypes)

            unet_storage_dtype_overwrite = backend.args.dynamic_args.get('forge_unet_storage_dtype')

            if unet_storage_dtype_overwrite is not None:
                storage_dtype = unet_storage_dtype_overwrite
            elif state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, 'nf4', 'fp4', 'gguf']:
                print(f'Using Detected UNet Type: {state_dict_dtype}')
                storage_dtype = state_dict_dtype
                if state_dict_dtype in ['nf4', 'fp4', 'gguf']:
                    print(f'Using pre-quant state dict!')
                    if state_dict_dtype in ['gguf']:
                        beautiful_print_gguf_state_dict_statics(state_dict)

            load_device = memory_management.get_torch_device()
            computation_dtype = memory_management.get_computation_dtype(load_device, parameters=state_dict_parameters, supported_dtypes=guess.supported_inference_dtypes)
            offload_device = memory_management.unet_offload_device()

            if storage_dtype in ['nf4', 'fp4', 'gguf']:
                initial_device = memory_management.unet_inital_load_device(parameters=state_dict_parameters, dtype=computation_dtype)
                with using_forge_operations(device=initial_device, dtype=computation_dtype, manual_cast_enabled=False, bnb_dtype=storage_dtype):
                    model = model_loader(unet_config)
            else:
                initial_device = memory_management.unet_inital_load_device(parameters=state_dict_parameters, dtype=storage_dtype)
                need_manual_cast = storage_dtype != computation_dtype
                to_args = dict(device=initial_device, dtype=storage_dtype)

                with using_forge_operations(**to_args, manual_cast_enabled=need_manual_cast):
                    model = model_loader(unet_config).to(**to_args)

            load_state_dict(model, state_dict)

            if hasattr(model, '_internal_dict'):
                model._internal_dict = unet_config
            else:
                model.config = unet_config

            model.storage_dtype = storage_dtype
            model.computation_dtype = computation_dtype
            model.load_device = load_device
            model.initial_device = initial_device
            model.offload_device = offload_device

            return model

    print(f'Skipped: {component_name} = {lib_name}.{cls_name}')
    return None


def replace_state_dict(sd, asd, guess):
    vae_key_prefix = guess.vae_key_prefix[0]
    text_encoder_key_prefix = guess.text_encoder_key_prefix[0]

    if 'enc.blk.0.attn_k.weight' in asd:
        wierd_t5_format_from_city96 = {
            "enc.": "encoder.",
            ".blk.": ".block.",
            "token_embd": "shared",
            "output_norm": "final_layer_norm",
            "attn_q": "layer.0.SelfAttention.q",
            "attn_k": "layer.0.SelfAttention.k",
            "attn_v": "layer.0.SelfAttention.v",
            "attn_o": "layer.0.SelfAttention.o",
            "attn_norm": "layer.0.layer_norm",
            "attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
            "ffn_up": "layer.1.DenseReluDense.wi_1",
            "ffn_down": "layer.1.DenseReluDense.wo",
            "ffn_gate": "layer.1.DenseReluDense.wi_0",
            "ffn_norm": "layer.1.layer_norm",
        }
        wierd_t5_pre_quant_keys_from_city96 = ['shared.weight']
        asd_new = {}
        for k, v in asd.items():
            for s, d in wierd_t5_format_from_city96.items():
                k = k.replace(s, d)
            asd_new[k] = v
        for k in wierd_t5_pre_quant_keys_from_city96:
            asd_new[k] = asd_new[k].dequantize_as_pytorch_parameter()
        asd.clear()
        asd = asd_new

    if "decoder.conv_in.weight" in asd:
        keys_to_delete = [k for k in sd if k.startswith(vae_key_prefix)]
        for k in keys_to_delete:
            del sd[k]
        for k, v in asd.items():
            sd[vae_key_prefix + k] = v

    if 'text_model.encoder.layers.0.layer_norm1.weight' in asd:
        keys_to_delete = [k for k in sd if k.startswith(f"{text_encoder_key_prefix}clip_l.")]
        for k in keys_to_delete:
            del sd[k]
        for k, v in asd.items():
            sd[f"{text_encoder_key_prefix}clip_l.transformer.{k}"] = v

    if 'encoder.block.0.layer.0.SelfAttention.k.weight' in asd:
        keys_to_delete = [k for k in sd if k.startswith(f"{text_encoder_key_prefix}t5xxl.")]
        for k in keys_to_delete:
            del sd[k]
        for k, v in asd.items():
            sd[f"{text_encoder_key_prefix}t5xxl.transformer.{k}"] = v

    return sd


def preprocess_state_dict(sd):
    if any("double_block" in k for k in sd.keys()):
        if not any(k.startswith("model.diffusion_model") for k in sd.keys()):
            sd = {f"model.diffusion_model.{k}": v for k, v in sd.items()}

    return sd


def split_state_dict(sd, additional_state_dicts: list = None):
    sd = load_torch_file(sd)
    sd = preprocess_state_dict(sd)
    guess = huggingface_guess.guess(sd)

    if isinstance(additional_state_dicts, list):
        for asd in additional_state_dicts:
            asd = load_torch_file(asd)
            sd = replace_state_dict(sd, asd, guess)

    guess.clip_target = guess.clip_target(sd)
    guess.model_type = guess.model_type(sd)
    guess.ztsnr = 'ztsnr' in sd

    state_dict = {
        guess.unet_target: try_filter_state_dict(sd, guess.unet_key_prefix),
        guess.vae_target: try_filter_state_dict(sd, guess.vae_key_prefix)
    }

    sd = guess.process_clip_state_dict(sd)

    for k, v in guess.clip_target.items():
        state_dict[v] = try_filter_state_dict(sd, [k + '.'])

    state_dict['ignore'] = sd

    print_dict = {k: len(v) for k, v in state_dict.items()}
    print(f'StateDict Keys: {print_dict}')

    del state_dict['ignore']

    return state_dict, guess


@torch.inference_mode()
def forge_loader(sd, additional_state_dicts=None):
    try:
        state_dicts, estimated_config = split_state_dict(sd, additional_state_dicts=additional_state_dicts)
    except:
        raise ValueError('Failed to recognize model type!')
    
    repo_name = estimated_config.huggingface_repo

    local_path = os.path.join(dir_path, 'huggingface', repo_name)
    config: dict = DiffusionPipeline.load_config(local_path)
    huggingface_components = {}
    for component_name, v in config.items():
        if isinstance(v, list) and len(v) == 2:
            lib_name, cls_name = v
            component_sd = state_dicts.get(component_name, None)
            component = load_huggingface_component(estimated_config, component_name, lib_name, cls_name, local_path, component_sd)
            if component_sd is not None:
                del state_dicts[component_name]
            if component is not None:
                huggingface_components[component_name] = component

    yaml_config = None
    yaml_config_prediction_type = None

    try:
        import yaml
        from pathlib import Path
        config_filename = os.path.splitext(sd)[0] + '.yaml'
        if Path(config_filename).is_file():
            with open(config_filename, 'r') as stream:
                yaml_config = yaml.safe_load(stream)
    except ImportError:
        pass

    # Fix Huggingface prediction type using .yaml config or estimated config detection
    prediction_types = {
        'EPS': 'epsilon',
        'V_PREDICTION': 'v_prediction',
        'EDM': 'edm',
    }

    has_prediction_type = 'scheduler' in huggingface_components and hasattr(huggingface_components['scheduler'], 'config') and 'prediction_type' in huggingface_components['scheduler'].config

    if yaml_config is not None:
        yaml_config_prediction_type: str = (
                yaml_config.get('model', {}).get('params', {}).get('parameterization', '')
            or  yaml_config.get('model', {}).get('params', {}).get('denoiser_config', {}).get('params', {}).get('scaling_config', {}).get('target', '')
        )
        if yaml_config_prediction_type == 'v' or yaml_config_prediction_type.endswith(".VScaling"):
            yaml_config_prediction_type = 'v_prediction'
        else:
            # Use estimated prediction config if no suitable prediction type found
            yaml_config_prediction_type = ''

    if has_prediction_type:
        if yaml_config_prediction_type:
            huggingface_components['scheduler'].config.prediction_type = yaml_config_prediction_type
        else:
            huggingface_components['scheduler'].config.prediction_type = prediction_types.get(estimated_config.model_type.name, huggingface_components['scheduler'].config.prediction_type)

    for M in possible_models:
        if any(isinstance(estimated_config, x) for x in M.matched_guesses):
            return M(estimated_config=estimated_config, huggingface_components=huggingface_components)

    print('Failed to recognize model type!')
    return None