File size: 36,370 Bytes
ad93086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
# Cherry-picked some good parts from ComfyUI with some bad parts fixed

import sys
import time
import psutil
import torch
import platform

from enum import Enum
from backend import stream, utils
from backend.args import args


cpu = torch.device('cpu')


class VRAMState(Enum):
    DISABLED = 0  # No vram present: no need to move models to vram
    NO_VRAM = 1  # Very low vram: enable all the options to save vram
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
    SHARED = 5  # No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.


class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2


# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
cpu_state = CPUState.GPU

total_vram = 0

lowvram_available = True
xpu_available = False

if args.pytorch_deterministic:
    print("Using deterministic algorithms for pytorch")
    torch.use_deterministic_algorithms(True, warn_only=True)

directml_enabled = False
if args.directml is not None:
    import torch_directml

    directml_enabled = True
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device: {}".format(torch_directml.device_name(device_index)))

try:
    import intel_extension_for_pytorch as ipex

    if torch.xpu.is_available():
        xpu_available = True
except:
    pass

try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
        import torch.mps
except:
    pass

if args.always_cpu:
    cpu_state = CPUState.CPU


def is_intel_xpu():
    global cpu_state
    global xpu_available
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False


def get_torch_device():
    global directml_enabled
    global cpu_state
    if directml_enabled:
        global directml_device
        return directml_device
    if cpu_state == CPUState.MPS:
        return torch.device("mps")
    if cpu_state == CPUState.CPU:
        return torch.device("cpu")
    else:
        if is_intel_xpu():
            return torch.device("xpu", torch.xpu.current_device())
        else:
            return torch.device(torch.cuda.current_device())


def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024  # TODO
            mem_total_torch = mem_total
        elif is_intel_xpu():
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            mem_total_torch = mem_reserved
            mem_total = torch.xpu.get_device_properties(dev).total_memory
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total


total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))

try:
    print("pytorch version: {}".format(torch.version.__version__))
except:
    pass

try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

if directml_enabled:
    OOM_EXCEPTION = Exception

XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
else:
    try:
        import xformers
        import xformers.ops

        XFORMERS_IS_AVAILABLE = True
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version: {}".format(XFORMERS_VERSION))
            if XFORMERS_VERSION.startswith("0.0.18"):
                print("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.\n")
                XFORMERS_ENABLED_VAE = False
        except:
            pass
    except:
        XFORMERS_IS_AVAILABLE = False


def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
    return False


ENABLE_PYTORCH_ATTENTION = False
if args.attention_pytorch:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

VAE_DTYPES = [torch.float32]

try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
            if ENABLE_PYTORCH_ATTENTION == False and args.attention_split == False and args.attention_quad == False:
                ENABLE_PYTORCH_ATTENTION = True
            if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
                VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
    if is_intel_xpu():
        if args.attention_split == False and args.attention_quad == False:
            ENABLE_PYTORCH_ATTENTION = True
except:
    pass

if is_intel_xpu():
    VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES

if args.vae_in_cpu:
    VAE_DTYPES = [torch.float32]

VAE_ALWAYS_TILED = False

if ENABLE_PYTORCH_ATTENTION:
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)

if args.always_low_vram:
    set_vram_to = VRAMState.LOW_VRAM
    lowvram_available = True
elif args.always_no_vram:
    set_vram_to = VRAMState.NO_VRAM
elif args.always_high_vram or args.always_gpu:
    vram_state = VRAMState.HIGH_VRAM

FORCE_FP32 = False
FORCE_FP16 = False
if args.all_in_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

if args.all_in_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

if lowvram_available:
    if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
        vram_state = set_vram_to

if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED

if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED

print(f"Set vram state to: {vram_state.name}")

ALWAYS_VRAM_OFFLOAD = args.always_offload_from_vram

if ALWAYS_VRAM_OFFLOAD:
    print("Always offload VRAM")

PIN_SHARED_MEMORY = args.pin_shared_memory

if PIN_SHARED_MEMORY:
    print("Always pin shared GPU memory")


def get_torch_device_name(device):
    if hasattr(device, 'type'):
        if device.type == "cuda":
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
        else:
            return "{}".format(device.type)
    elif is_intel_xpu():
        return "{} {}".format(device, torch.xpu.get_device_name(device))
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))


try:
    torch_device_name = get_torch_device_name(get_torch_device())
    print("Device: {}".format(torch_device_name))
except:
    torch_device_name = ''
    print("Could not pick default device.")

if 'rtx' in torch_device_name.lower():
    if not args.cuda_malloc:
        print('Hint: your device supports --cuda-malloc for potential speed improvements.')


current_loaded_models = []


def state_dict_size(sd, exclude_device=None):
    module_mem = 0
    for k in sd:
        t = sd[k]

        if exclude_device is not None:
            if t.device == exclude_device:
                continue

        module_mem += t.nelement() * t.element_size()
    return module_mem


def state_dict_parameters(sd):
    module_mem = 0
    for k, v in sd.items():
        module_mem += v.nelement()
    return module_mem


def state_dict_dtype(state_dict):
    for k, v in state_dict.items():
        if hasattr(v, 'gguf_cls'):
            return 'gguf'
        if 'bitsandbytes__nf4' in k:
            return 'nf4'
        if 'bitsandbytes__fp4' in k:
            return 'fp4'

    dtype_counts = {}

    for tensor in state_dict.values():
        dtype = tensor.dtype
        if dtype in dtype_counts:
            dtype_counts[dtype] += 1
        else:
            dtype_counts[dtype] = 1

    major_dtype = None
    max_count = 0

    for dtype, count in dtype_counts.items():
        if count > max_count:
            max_count = count
            major_dtype = dtype

    return major_dtype


def bake_gguf_model(model):
    if getattr(model, 'gguf_baked', False):
        return

    for p in model.parameters():
        gguf_cls = getattr(p, 'gguf_cls', None)
        if gguf_cls is not None:
            gguf_cls.bake(p)

    global signal_empty_cache
    signal_empty_cache = True

    model.gguf_baked = True
    return model


def module_size(module, exclude_device=None, include_device=None, return_split=False):
    module_mem = 0
    weight_mem = 0
    weight_patterns = ['weight']

    for k, p in module.named_parameters():
        t = p.data

        if exclude_device is not None:
            if t.device == exclude_device:
                continue

        if include_device is not None:
            if t.device != include_device:
                continue

        element_size = t.element_size()

        if getattr(p, 'quant_type', None) in ['fp4', 'nf4']:
            if element_size > 1:
                # not quanted yet
                element_size = 0.55  # a bit more than 0.5 because of quant state parameters
            else:
                # quanted
                element_size = 1.1  # a bit more than 0.5 because of quant state parameters

        module_mem += t.nelement() * element_size

        if k in weight_patterns:
            weight_mem += t.nelement() * element_size

    if return_split:
        return module_mem, weight_mem, module_mem - weight_mem

    return module_mem


def module_move(module, device, recursive=True, excluded_pattens=[]):
    if recursive:
        return module.to(device=device)

    for k, p in module.named_parameters(recurse=False, remove_duplicate=True):
        if k in excluded_pattens:
            continue
        setattr(module, k, utils.tensor2parameter(p.to(device=device)))

    return module


def build_module_profile(model, model_gpu_memory_when_using_cpu_swap):
    all_modules = []
    legacy_modules = []

    for m in model.modules():
        if hasattr(m, "parameters_manual_cast"):
            m.total_mem, m.weight_mem, m.extra_mem = module_size(m, return_split=True)
            all_modules.append(m)
        elif hasattr(m, "weight"):
            m.total_mem, m.weight_mem, m.extra_mem = module_size(m, return_split=True)
            legacy_modules.append(m)

    gpu_modules = []
    gpu_modules_only_extras = []
    mem_counter = 0

    for m in legacy_modules.copy():
        gpu_modules.append(m)
        legacy_modules.remove(m)
        mem_counter += m.total_mem

    for m in sorted(all_modules, key=lambda x: x.extra_mem).copy():
        if mem_counter + m.extra_mem < model_gpu_memory_when_using_cpu_swap:
            gpu_modules_only_extras.append(m)
            all_modules.remove(m)
            mem_counter += m.extra_mem

    cpu_modules = all_modules

    for m in sorted(gpu_modules_only_extras, key=lambda x: x.weight_mem).copy():
        if mem_counter + m.weight_mem < model_gpu_memory_when_using_cpu_swap:
            gpu_modules.append(m)
            gpu_modules_only_extras.remove(m)
            mem_counter += m.weight_mem

    return gpu_modules, gpu_modules_only_extras, cpu_modules


class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
        self.inclusive_memory = 0
        self.exclusive_memory = 0

    def compute_inclusive_exclusive_memory(self):
        self.inclusive_memory = module_size(self.model.model, include_device=self.device)
        self.exclusive_memory = module_size(self.model.model, exclude_device=self.device)
        return

    def model_load(self, model_gpu_memory_when_using_cpu_swap=-1):
        patch_model_to = None
        do_not_need_cpu_swap = model_gpu_memory_when_using_cpu_swap < 0

        if do_not_need_cpu_swap:
            patch_model_to = self.device

        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())

        try:
            self.real_model = self.model.forge_patch_model(patch_model_to)
            self.model.current_device = self.model.load_device
        except Exception as e:
            self.model.forge_unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e

        if do_not_need_cpu_swap:
            print('All loaded to GPU.')
        else:
            gpu_modules, gpu_modules_only_extras, cpu_modules = build_module_profile(self.real_model, model_gpu_memory_when_using_cpu_swap)
            pin_memory = PIN_SHARED_MEMORY and is_device_cpu(self.model.offload_device)

            mem_counter = 0
            swap_counter = 0

            for m in gpu_modules:
                m.to(self.device)
                mem_counter += m.total_mem

            for m in cpu_modules:
                m.prev_parameters_manual_cast = m.parameters_manual_cast
                m.parameters_manual_cast = True
                m.to(self.model.offload_device)
                if pin_memory:
                    m._apply(lambda x: x.pin_memory())
                swap_counter += m.total_mem

            for m in gpu_modules_only_extras:
                m.prev_parameters_manual_cast = m.parameters_manual_cast
                m.parameters_manual_cast = True
                module_move(m, device=self.device, recursive=False, excluded_pattens=['weight'])
                if hasattr(m, 'weight') and m.weight is not None:
                    if pin_memory:
                        m.weight = utils.tensor2parameter(m.weight.to(self.model.offload_device).pin_memory())
                    else:
                        m.weight = utils.tensor2parameter(m.weight.to(self.model.offload_device))
                mem_counter += m.extra_mem
                swap_counter += m.weight_mem

            swap_flag = 'Shared' if PIN_SHARED_MEMORY else 'CPU'
            method_flag = 'asynchronous' if stream.should_use_stream() else 'blocked'
            print(f"{swap_flag} Swap Loaded ({method_flag} method): {swap_counter / (1024 * 1024):.2f} MB, GPU Loaded: {mem_counter / (1024 * 1024):.2f} MB")

            self.model_accelerated = True

            global signal_empty_cache
            signal_empty_cache = True

        bake_gguf_model(self.real_model)

        self.model.refresh_loras()

        if is_intel_xpu() and not args.disable_ipex_hijack:
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)

        return self.real_model

    def model_unload(self, avoid_model_moving=False):
        if self.model_accelerated:
            for m in self.real_model.modules():
                if hasattr(m, "prev_parameters_manual_cast"):
                    m.parameters_manual_cast = m.prev_parameters_manual_cast
                    del m.prev_parameters_manual_cast

            self.model_accelerated = False

        if avoid_model_moving:
            self.model.forge_unpatch_model()
        else:
            self.model.forge_unpatch_model(self.model.offload_device)
            self.model.model_patches_to(self.model.offload_device)

    def __eq__(self, other):
        return self.model is other.model  # and self.memory_required == other.memory_required


current_inference_memory = 1024 * 1024 * 1024


def minimum_inference_memory():
    global current_inference_memory
    return current_inference_memory


def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        current_loaded_models.pop(i).model_unload(avoid_model_moving=True)


def free_memory(memory_required, device, keep_loaded=[], free_all=False):
    # this check fully unloads any 'abandoned' models
    for i in range(len(current_loaded_models) - 1, -1, -1):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            current_loaded_models.pop(i).model_unload(avoid_model_moving=True)

    if free_all:
        memory_required = 1e30
        print(f"[Unload] Trying to free all memory for {device} with {len(keep_loaded)} models keep loaded ... ", end="")
    else:
        print(f"[Unload] Trying to free {memory_required / (1024 * 1024):.2f} MB for {device} with {len(keep_loaded)} models keep loaded ... ", end="")

    offload_everything = ALWAYS_VRAM_OFFLOAD or vram_state == VRAMState.NO_VRAM
    unloaded_model = False
    for i in range(len(current_loaded_models) - 1, -1, -1):
        if not offload_everything:
            free_memory = get_free_memory(device)
            print(f"Current free memory is {free_memory / (1024 * 1024):.2f} MB ... ", end="")
            if free_memory > memory_required:
                break
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
                m = current_loaded_models.pop(i)
                print(f"Unload model {m.model.model.__class__.__name__} ", end="")
                m.model_unload()
                del m
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()

    print('Done.')
    return


def compute_model_gpu_memory_when_using_cpu_swap(current_free_mem, inference_memory):
    maximum_memory_available = current_free_mem - inference_memory

    suggestion = max(
        maximum_memory_available / 1.3,
        maximum_memory_available - 1024 * 1024 * 1024 * 1.25
    )

    return int(max(0, suggestion))


def load_models_gpu(models, memory_required=0, hard_memory_preservation=0):
    global vram_state

    execution_start_time = time.perf_counter()
    memory_to_free = max(minimum_inference_memory(), memory_required) + hard_memory_preservation
    memory_for_inference = minimum_inference_memory() + hard_memory_preservation

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(memory_to_free, d, models_already_loaded)

        moving_time = time.perf_counter() - execution_start_time
        if moving_time > 0.1:
            print(f'Memory cleanup has taken {moving_time:.2f} seconds')

        return

    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)

    total_memory_required = {}
    for loaded_model in models_to_load:
        loaded_model.compute_inclusive_exclusive_memory()
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.exclusive_memory + loaded_model.inclusive_memory * 0.25

    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + memory_to_free, device, models_already_loaded)

    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state

        model_gpu_memory_when_using_cpu_swap = -1

        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_require = loaded_model.exclusive_memory
            previously_loaded = loaded_model.inclusive_memory
            current_free_mem = get_free_memory(torch_dev)
            estimated_remaining_memory = current_free_mem - model_require - memory_for_inference

            print(f"[Memory Management] Target: {loaded_model.model.model.__class__.__name__}, Free GPU: {current_free_mem / (1024 * 1024):.2f} MB, Model Require: {model_require / (1024 * 1024):.2f} MB, Previously Loaded: {previously_loaded / (1024 * 1024):.2f} MB, Inference Require: {memory_for_inference / (1024 * 1024):.2f} MB, Remaining: {estimated_remaining_memory / (1024 * 1024):.2f} MB, ", end="")

            if estimated_remaining_memory < 0:
                vram_set_state = VRAMState.LOW_VRAM
                model_gpu_memory_when_using_cpu_swap = compute_model_gpu_memory_when_using_cpu_swap(current_free_mem, memory_for_inference)
                if previously_loaded > 0:
                    model_gpu_memory_when_using_cpu_swap = previously_loaded

        if vram_set_state == VRAMState.NO_VRAM:
            model_gpu_memory_when_using_cpu_swap = 0

        loaded_model.model_load(model_gpu_memory_when_using_cpu_swap)
        current_loaded_models.insert(0, loaded_model)

    moving_time = time.perf_counter() - execution_start_time
    print(f'Moving model(s) has taken {moving_time:.2f} seconds')

    return


def load_model_gpu(model):
    return load_models_gpu([model])


def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x


def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except:  # Old pytorch doesn't have .itemsize
            pass
    return dtype_size


def unet_offload_device():
    if vram_state == VRAMState.HIGH_VRAM:
        return get_torch_device()
    else:
        return torch.device("cpu")


def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
    if ALWAYS_VRAM_OFFLOAD:
        return cpu_dev

    model_size = dtype_size(dtype) * parameters

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev


def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
    if args.unet_in_bf16:
        return torch.bfloat16

    if args.unet_in_fp16:
        return torch.float16

    if args.unet_in_fp8_e4m3fn:
        return torch.float8_e4m3fn

    if args.unet_in_fp8_e5m2:
        return torch.float8_e5m2

    for candidate in supported_dtypes:
        if candidate == torch.float16:
            if should_use_fp16(device, model_params=model_params, prioritize_performance=True, manual_cast=True):
                return candidate
        if candidate == torch.bfloat16:
            if should_use_bf16(device, model_params=model_params, prioritize_performance=True, manual_cast=True):
                return candidate

    return torch.float32


def get_computation_dtype(inference_device, parameters=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
    for candidate in supported_dtypes:
        if candidate == torch.float16:
            if should_use_fp16(inference_device, model_params=parameters, prioritize_performance=True, manual_cast=False):
                return candidate
        if candidate == torch.bfloat16:
            if should_use_bf16(inference_device, model_params=parameters, prioritize_performance=True, manual_cast=False):
                return candidate

    return torch.float32


def text_encoder_offload_device():
    if args.always_gpu:
        return get_torch_device()
    else:
        return torch.device("cpu")


def text_encoder_device():
    if args.always_gpu:
        return get_torch_device()
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
        if should_use_fp16(prioritize_performance=False):
            return get_torch_device()
        else:
            return torch.device("cpu")
    else:
        return torch.device("cpu")


def text_encoder_dtype(device=None):
    if args.clip_in_fp8_e4m3fn:
        return torch.float8_e4m3fn
    elif args.clip_in_fp8_e5m2:
        return torch.float8_e5m2
    elif args.clip_in_fp16:
        return torch.float16
    elif args.clip_in_fp32:
        return torch.float32

    if is_device_cpu(device):
        return torch.float16

    return torch.float16


def intermediate_device():
    if args.always_gpu:
        return get_torch_device()
    else:
        return torch.device("cpu")


def vae_device():
    if args.vae_in_cpu:
        return torch.device("cpu")
    return get_torch_device()


def vae_offload_device():
    if args.always_gpu:
        return get_torch_device()
    else:
        return torch.device("cpu")


def vae_dtype(device=None, allowed_dtypes=[]):
    global VAE_DTYPES
    if args.vae_in_fp16:
        return torch.float16
    elif args.vae_in_bf16:
        return torch.bfloat16
    elif args.vae_in_fp32:
        return torch.float32

    for d in allowed_dtypes:
        if d == torch.float16 and should_use_fp16(device, prioritize_performance=False):
            return d
        if d in VAE_DTYPES:
            return d

    return VAE_DTYPES[0]


print(f"VAE dtype preferences: {VAE_DTYPES} -> {vae_dtype()}")


def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"


def supports_dtype(device, dtype):  # TODO
    if dtype == torch.float32:
        return True
    if is_device_cpu(device):
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False


def supports_cast(device, dtype):  # TODO
    if dtype == torch.float32:
        return True
    if dtype == torch.float16:
        return True
    if directml_enabled:  # TODO: test this
        return False
    if dtype == torch.bfloat16:
        return True
    if is_device_mps(device):
        return False
    if dtype == torch.float8_e4m3fn:
        return True
    if dtype == torch.float8_e5m2:
        return True
    return False


def pick_weight_dtype(dtype, fallback_dtype, device=None):
    if dtype is None:
        dtype = fallback_dtype
    elif dtype_size(dtype) > dtype_size(fallback_dtype):
        dtype = fallback_dtype

    if not supports_cast(device, dtype):
        dtype = fallback_dtype

    return dtype


def device_supports_non_blocking(device):
    if is_device_mps(device):
        return False  # pytorch bug? mps doesn't support non blocking
    if is_intel_xpu():
        return False
    if args.pytorch_deterministic:  # TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
        return False
    if directml_enabled:
        return False
    return True


def device_should_use_non_blocking(device):
    if not device_supports_non_blocking(device):
        return False
    return False
    # return True #TODO: figure out why this causes memory issues on Nvidia and possibly others


def force_channels_last():
    if args.force_channels_last:
        return True

    # TODO
    return False


def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
        elif is_intel_xpu():
            device_supports_cast = True

    non_blocking = device_should_use_non_blocking(device)

    if device_supports_cast:
        if copy:
            if tensor.device == device:
                return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
            return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
        else:
            return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
    else:
        return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)


def xformers_enabled():
    global directml_enabled
    global cpu_state
    if cpu_state != CPUState.GPU:
        return False
    if is_intel_xpu():
        return False
    if directml_enabled:
        return False
    return XFORMERS_IS_AVAILABLE


def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False

    return XFORMERS_ENABLED_VAE


def pytorch_attention_enabled():
    global ENABLE_PYTORCH_ATTENTION
    return ENABLE_PYTORCH_ATTENTION


def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        # TODO: more reliable way of checking for flash attention?
        if is_nvidia():  # pytorch flash attention only works on Nvidia
            return True
        if is_intel_xpu():
            return True
    return False


def force_upcast_attention_dtype():
    upcast = args.force_upcast_attention
    try:
        if platform.mac_ver()[0] in ['14.5']:  # black image bug on OSX Sonoma 14.5
            upcast = True
    except:
        pass
    if upcast:
        return torch.float32
    else:
        return None


def get_free_memory(dev=None, torch_free_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024
            mem_free_torch = mem_free_total
        elif is_intel_xpu():
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
            mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
            mem_free_total = mem_free_xpu + mem_free_torch
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total


def cpu_mode():
    global cpu_state
    return cpu_state == CPUState.CPU


def mps_mode():
    global cpu_state
    return cpu_state == CPUState.MPS


def is_device_type(device, type):
    if hasattr(device, 'type'):
        if (device.type == type):
            return True
    return False


def is_device_cpu(device):
    return is_device_type(device, 'cpu')


def is_device_mps(device):
    return is_device_type(device, 'mps')


def is_device_cuda(device):
    return is_device_type(device, 'cuda')


def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
    global directml_enabled

    if device is not None:
        if is_device_cpu(device):
            return False

    if FORCE_FP16:
        return True

    if device is not None:
        if is_device_mps(device):
            return True

    if FORCE_FP32:
        return False

    if directml_enabled:
        return False

    if mps_mode():
        return True

    if cpu_mode():
        return False

    if is_intel_xpu():
        return True

    if torch.version.hip:
        return True

    props = torch.cuda.get_device_properties("cuda")
    if props.major >= 8:
        return True

    if props.major < 6:
        return False

    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            if manual_cast:
                # For storage dtype
                free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
                if (not prioritize_performance) or model_params * 4 > free_model_memory:
                    return True
            else:
                # For computation dtype
                return False  # Flux on 1080 can store model in fp16 to reduce swap, but computation must be fp32, otherwise super slow.

    if props.major < 7:
        return False

    # FP16 is just broken on these cards
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True


def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
    if device is not None:
        if is_device_cpu(device):  # TODO ? bf16 works on CPU but is extremely slow
            return False

    if device is not None:
        if is_device_mps(device):
            return True

    if FORCE_FP32:
        return False

    if directml_enabled:
        return False

    if mps_mode():
        return True

    if cpu_mode():
        return False

    if is_intel_xpu():
        return True

    if device is None:
        device = torch.device("cuda")

    props = torch.cuda.get_device_properties(device)
    if props.major >= 8:
        return True

    if torch.cuda.is_bf16_supported():
        # This device is an old enough device but bf16 somewhat reports supported.
        # So in this case bf16 should only be used as storge dtype
        if manual_cast:
            # For storage dtype
            free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
            if (not prioritize_performance) or model_params * 4 > free_model_memory:
                return True

    return False


def can_install_bnb():
    try:
        if not torch.cuda.is_available():
            return False

        cuda_version = tuple(int(x) for x in torch.version.cuda.split('.'))

        if cuda_version >= (11, 7):
            return True

        return False
    except:
        return False


signal_empty_cache = False


def soft_empty_cache(force=False):
    global cpu_state, signal_empty_cache
    if cpu_state == CPUState.MPS:
        torch.mps.empty_cache()
    elif is_intel_xpu():
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
        if force or is_nvidia():  # This seems to make things worse on ROCm so I only do it for cuda
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
    signal_empty_cache = False
    return


def unload_all_models():
    free_memory(1e30, get_torch_device(), free_all=True)