File size: 32,850 Bytes
ad93086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
import math
import torch
from torch import nn
from einops import rearrange, repeat
from backend.attention import attention_function
from diffusers.configuration_utils import ConfigMixin, register_to_config


def checkpoint(f, args, parameters, enable=False):
    if enable:
        raise NotImplementedError('Gradient Checkpointing is not implemented.')
    return f(*args)


def exists(val):
    return val is not None


def default(val, d):
    if exists(val):
        return val
    return d


def conv_nd(dims, *args, **kwargs):
    if dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    else:
        raise ValueError(f"unsupported dimensions: {dims}")


def avg_pool_nd(dims, *args, **kwargs):
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def apply_control(h, control, name):
    if control is not None and name in control and len(control[name]) > 0:
        ctrl = control[name].pop()
        if ctrl is not None:
            try:
                h += ctrl
            except:
                print("warning control could not be applied", h.shape, ctrl.shape)
    return h


def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
    # Consistent with Kohya to reduce differences between model training and inference.
    # Will be 0.005% slower than ComfyUI but Forge outweigh image quality than speed.
    if not repeat_only:
        half = dim // 2
        freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=timesteps.device)
        args = timesteps[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    else:
        embedding = repeat(timesteps, 'b -> b d', d=dim)
    return embedding


class TimestepBlock(nn.Module):
    pass


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    def forward(self, x, emb, context=None, transformer_options={}, output_shape=None):
        block_inner_modifiers = transformer_options.get("block_inner_modifiers", [])
        for layer_index, layer in enumerate(self):
            for modifier in block_inner_modifiers:
                x = modifier(x, 'before', layer, layer_index, self, transformer_options)
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb, transformer_options)
            elif isinstance(layer, SpatialTransformer):
                x = layer(x, context, transformer_options)
                if "transformer_index" in transformer_options:
                    transformer_options["transformer_index"] += 1
            elif isinstance(layer, Upsample):
                x = layer(x, output_shape=output_shape)
            else:
                x = layer(x)
            for modifier in block_inner_modifiers:
                x = modifier(x, 'after', layer, layer_index, self, transformer_options)
        return x


class Timestep(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, t):
        return timestep_embedding(t, self.dim)


class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * torch.nn.functional.gelu(gate)


class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
            nn.Linear(dim, inner_dim),
            nn.GELU()
        ) if not glu else GEGLU(dim, inner_dim)
        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
            nn.Linear(inner_dim, dim_out)
        )

    def forward(self, x):
        return self.net(x)


class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)
        self.heads = heads
        self.dim_head = dim_head
        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))

    def forward(self, x, context=None, value=None, mask=None, transformer_options={}):
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        if value is not None:
            v = self.to_v(value)
            del value
        else:
            v = self.to_v(context)
        out = attention_function(q, k, v, self.heads, mask)
        return self.to_out(out)


class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False,
                 inner_dim=None, disable_self_attn=False):
        super().__init__()
        self.ff_in = ff_in or inner_dim is not None
        if inner_dim is None:
            inner_dim = dim
        self.is_res = inner_dim == dim
        if self.ff_in:
            self.norm_in = nn.LayerNorm(dim)
            self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff)
        self.disable_self_attn = disable_self_attn
        self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=context_dim if self.disable_self_attn else None)
        self.norm1 = nn.LayerNorm(inner_dim)
        self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout)
        self.norm2 = nn.LayerNorm(inner_dim)
        self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff)
        self.norm3 = nn.LayerNorm(inner_dim)
        self.checkpoint = checkpoint
        self.n_heads = n_heads
        self.d_head = d_head

    def forward(self, x, context=None, transformer_options={}):
        return checkpoint(self._forward, (x, context, transformer_options), None, self.checkpoint)

    def _forward(self, x, context=None, transformer_options={}):
        # Stolen from ComfyUI with some modifications
        extra_options = {}
        block = transformer_options.get("block", None)
        block_index = transformer_options.get("block_index", 0)
        transformer_patches = {}
        transformer_patches_replace = {}
        for k in transformer_options:
            if k == "patches":
                transformer_patches = transformer_options[k]
            elif k == "patches_replace":
                transformer_patches_replace = transformer_options[k]
            else:
                extra_options[k] = transformer_options[k]
        extra_options["n_heads"] = self.n_heads
        extra_options["dim_head"] = self.d_head
        if self.ff_in:
            x_skip = x
            x = self.ff_in(self.norm_in(x))
            if self.is_res:
                x += x_skip
        n = self.norm1(x)
        if self.disable_self_attn:
            context_attn1 = context
        else:
            context_attn1 = None
        value_attn1 = None
        if "attn1_patch" in transformer_patches:
            patch = transformer_patches["attn1_patch"]
            if context_attn1 is None:
                context_attn1 = n
            value_attn1 = context_attn1
            for p in patch:
                n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
        if block is not None:
            transformer_block = (block[0], block[1], block_index)
        else:
            transformer_block = None
        attn1_replace_patch = transformer_patches_replace.get("attn1", {})
        block_attn1 = transformer_block
        if block_attn1 not in attn1_replace_patch:
            block_attn1 = block
        if block_attn1 in attn1_replace_patch:
            if context_attn1 is None:
                context_attn1 = n
                value_attn1 = n
            n = self.attn1.to_q(n)
            context_attn1 = self.attn1.to_k(context_attn1)
            value_attn1 = self.attn1.to_v(value_attn1)
            n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
            n = self.attn1.to_out(n)
        else:
            n = self.attn1(n, context=context_attn1, value=value_attn1, transformer_options=extra_options)
        if "attn1_output_patch" in transformer_patches:
            patch = transformer_patches["attn1_output_patch"]
            for p in patch:
                n = p(n, extra_options)
        x += n
        if "middle_patch" in transformer_patches:
            patch = transformer_patches["middle_patch"]
            for p in patch:
                x = p(x, extra_options)
        if self.attn2 is not None:
            n = self.norm2(x)
            context_attn2 = context
            value_attn2 = None
            if "attn2_patch" in transformer_patches:
                patch = transformer_patches["attn2_patch"]
                value_attn2 = context_attn2
                for p in patch:
                    n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
            attn2_replace_patch = transformer_patches_replace.get("attn2", {})
            block_attn2 = transformer_block
            if block_attn2 not in attn2_replace_patch:
                block_attn2 = block
            if block_attn2 in attn2_replace_patch:
                if value_attn2 is None:
                    value_attn2 = context_attn2
                n = self.attn2.to_q(n)
                context_attn2 = self.attn2.to_k(context_attn2)
                value_attn2 = self.attn2.to_v(value_attn2)
                n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
                n = self.attn2.to_out(n)
            else:
                n = self.attn2(n, context=context_attn2, value=value_attn2, transformer_options=extra_options)
        if "attn2_output_patch" in transformer_patches:
            patch = transformer_patches["attn2_output_patch"]
            for p in patch:
                n = p(n, extra_options)
        x += n
        x_skip = 0
        if self.is_res:
            x_skip = x
        x = self.ff(self.norm3(x))
        if self.is_res:
            x += x_skip
        return x


class SpatialTransformer(nn.Module):
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None,
                 disable_self_attn=False, use_linear=False,
                 use_checkpoint=True):
        super().__init__()
        if exists(context_dim) and not isinstance(context_dim, list):
            context_dim = [context_dim] * depth
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
        if not use_linear:
            self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
        else:
            self.proj_in = nn.Linear(in_channels, inner_dim)
        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
             for d in range(depth)]
        )
        if not use_linear:
            self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
        else:
            self.proj_out = nn.Linear(in_channels, inner_dim)
        self.use_linear = use_linear

    def forward(self, x, context=None, transformer_options={}):
        if not isinstance(context, list):
            context = [context] * len(self.transformer_blocks)
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
            transformer_options["block_index"] = i
            x = block(x, context=context[i], transformer_options=transformer_options)
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in


class Upsample(nn.Module):
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        if use_conv:
            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)

    def forward(self, x, output_shape=None):
        assert x.shape[1] == self.channels
        if self.dims == 3:
            shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
            if output_shape is not None:
                shape[1] = output_shape[3]
                shape[2] = output_shape[4]
        else:
            shape = [x.shape[2] * 2, x.shape[3] * 2]
            if output_shape is not None:
                shape[0] = output_shape[2]
                shape[1] = output_shape[3]
        x = torch.nn.functional.interpolate(x, size=shape, mode="nearest")
        if self.use_conv:
            x = self.conv(x)
        return x


class Downsample(nn.Module):
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
            self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    def __init__(self, channels, emb_channels, dropout, out_channels=None, use_conv=False, use_scale_shift_norm=False,
                 dims=2, use_checkpoint=False, up=False, down=False, kernel_size=3, exchange_temb_dims=False,
                 skip_t_emb=False):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm
        self.exchange_temb_dims = exchange_temb_dims
        if isinstance(kernel_size, list):
            padding = [k // 2 for k in kernel_size]
        else:
            padding = kernel_size // 2
        self.in_layers = nn.Sequential(
            nn.GroupNorm(32, channels),
            nn.SiLU(),
            conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
        )
        self.updown = up or down
        if up:
            self.h_upd = Upsample(channels, False, dims)
            self.x_upd = Upsample(channels, False, dims)
        elif down:
            self.h_upd = Downsample(channels, False, dims)
            self.x_upd = Downsample(channels, False, dims)
        else:
            self.h_upd = self.x_upd = nn.Identity()
        self.skip_t_emb = skip_t_emb
        if self.skip_t_emb:
            self.emb_layers = None
            self.exchange_temb_dims = False
        else:
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                nn.Linear(emb_channels, 2 * self.out_channels if use_scale_shift_norm else self.out_channels),
            )
        self.out_layers = nn.Sequential(
            nn.GroupNorm(32, self.out_channels),
            nn.SiLU(),
            nn.Dropout(p=dropout),
            conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
        )
        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding)
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

    def forward(self, x, emb, transformer_options={}):
        return checkpoint(self._forward, (x, emb, transformer_options), None, self.use_checkpoint)

    def _forward(self, x, emb, transformer_options={}):
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            if "group_norm_wrapper" in transformer_options:
                in_norm, in_rest = in_rest[0], in_rest[1:]
                h = transformer_options["group_norm_wrapper"](in_norm, x, transformer_options)
                h = in_rest(h)
            else:
                h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            if "group_norm_wrapper" in transformer_options:
                in_norm = self.in_layers[0]
                h = transformer_options["group_norm_wrapper"](in_norm, x, transformer_options)
                h = self.in_layers[1:](h)
            else:
                h = self.in_layers(x)
        emb_out = None
        if not self.skip_t_emb:
            emb_out = self.emb_layers(emb).type(h.dtype)
            while len(emb_out.shape) < len(h.shape):
                emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            if "group_norm_wrapper" in transformer_options:
                h = transformer_options["group_norm_wrapper"](out_norm, h, transformer_options)
            else:
                h = out_norm(h)
            if emb_out is not None:
                scale, shift = torch.chunk(emb_out, 2, dim=1)
                h *= (1 + scale)
                h += shift
            h = out_rest(h)
        else:
            if emb_out is not None:
                if self.exchange_temb_dims:
                    emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
                h = h + emb_out
            if "group_norm_wrapper" in transformer_options:
                h = transformer_options["group_norm_wrapper"](self.out_layers[0], h, transformer_options)
                h = self.out_layers[1:](h)
            else:
                h = self.out_layers(h)
        return self.skip_connection(x) + h


class IntegratedUNet2DConditionModel(nn.Module, ConfigMixin):
    config_name = 'config.json'

    @register_to_config
    def __init__(self, in_channels, model_channels, out_channels, num_res_blocks, dropout=0, channel_mult=(1, 2, 4, 8),
                 conv_resample=True, dims=2, num_classes=None, use_checkpoint=False, num_heads=-1, num_head_channels=-1,
                 use_scale_shift_norm=False, resblock_updown=False, use_spatial_transformer=False, transformer_depth=1,
                 context_dim=None, disable_self_attentions=None, num_attention_blocks=None,
                 disable_middle_self_attn=False, use_linear_in_transformer=False, adm_in_channels=None,
                 transformer_depth_middle=None, transformer_depth_output=None):
        super().__init__()
        if context_dim is not None:
            assert use_spatial_transformer
        if num_heads == -1:
            assert num_head_channels != -1
        if num_head_channels == -1:
            assert num_heads != -1
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            self.num_res_blocks = num_res_blocks
        if disable_self_attentions is not None:
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)
        transformer_depth = transformer_depth[:]
        transformer_depth_output = transformer_depth_output[:]
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            nn.Linear(model_channels, time_embed_dim),
            nn.SiLU(),
            nn.Linear(time_embed_dim, time_embed_dim),
        )
        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                self.label_emb = nn.Linear(1, time_embed_dim)
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
                        nn.Linear(adm_in_channels, time_embed_dim),
                        nn.SiLU(),
                        nn.Linear(time_embed_dim, time_embed_dim),
                    )
                )
            else:
                raise ValueError('Bad ADM')
        self.input_blocks = nn.ModuleList(
            [TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    ResBlock(
                        channels=ch,
                        emb_channels=time_embed_dim,
                        dropout=dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                num_transformers = transformer_depth.pop(0)
                if num_transformers > 0:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False
                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
                        layers.append(SpatialTransformer(
                            ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
                            disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint,
                            use_linear=use_linear_in_transformer)
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            channels=ch,
                            emb_channels=time_embed_dim,
                            dropout=dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
                        else Downsample(
                            ch, conv_resample, dims=dims, out_channels=out_ch)
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch
        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        mid_block = [
            ResBlock(
                channels=ch,
                emb_channels=time_embed_dim,
                dropout=dropout,
                out_channels=None,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            )]
        if transformer_depth_middle >= 0:
            mid_block += [
                SpatialTransformer(
                    ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
                    disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint,
                    use_linear=use_linear_in_transformer),
                ResBlock(
                    channels=ch,
                    emb_channels=time_embed_dim,
                    dropout=dropout,
                    out_channels=None,
                    dims=dims,
                    use_checkpoint=use_checkpoint,
                    use_scale_shift_norm=use_scale_shift_norm,
                )]
        self.middle_block = TimestepEmbedSequential(*mid_block)
        self._feature_size += ch
        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(self.num_res_blocks[level] + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResBlock(
                        channels=ch + ich,
                        emb_channels=time_embed_dim,
                        dropout=dropout,
                        out_channels=model_channels * mult,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = model_channels * mult
                num_transformers = transformer_depth_output.pop()
                if num_transformers > 0:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False
                    if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
                        layers.append(
                            SpatialTransformer(
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
                                disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint,
                                use_linear=use_linear_in_transformer
                            )
                        )
                if level and i == self.num_res_blocks[level]:
                    out_ch = ch
                    layers.append(
                        ResBlock(
                            channels=ch,
                            emb_channels=time_embed_dim,
                            dropout=dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
                        )
                        if resblock_updown
                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
        self.out = nn.Sequential(
            nn.GroupNorm(32, ch),
            nn.SiLU(),
            conv_nd(dims, model_channels, out_channels, 3, padding=1),
        )

    def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
        transformer_options["original_shape"] = list(x.shape)
        transformer_options["transformer_index"] = 0
        transformer_patches = transformer_options.get("patches", {})
        block_modifiers = transformer_options.get("block_modifiers", [])
        assert (y is not None) == (self.num_classes is not None)
        hs = []
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
        emb = self.time_embed(t_emb)
        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)
        h = x
        for id, module in enumerate(self.input_blocks):
            transformer_options["block"] = ("input", id)
            for block_modifier in block_modifiers:
                h = block_modifier(h, 'before', transformer_options)
            h = module(h, emb, context, transformer_options)
            h = apply_control(h, control, 'input')
            for block_modifier in block_modifiers:
                h = block_modifier(h, 'after', transformer_options)
            if "input_block_patch" in transformer_patches:
                patch = transformer_patches["input_block_patch"]
                for p in patch:
                    h = p(h, transformer_options)
            hs.append(h)
            if "input_block_patch_after_skip" in transformer_patches:
                patch = transformer_patches["input_block_patch_after_skip"]
                for p in patch:
                    h = p(h, transformer_options)
        transformer_options["block"] = ("middle", 0)
        for block_modifier in block_modifiers:
            h = block_modifier(h, 'before', transformer_options)
        h = self.middle_block(h, emb, context, transformer_options)
        h = apply_control(h, control, 'middle')
        for block_modifier in block_modifiers:
            h = block_modifier(h, 'after', transformer_options)
        for id, module in enumerate(self.output_blocks):
            transformer_options["block"] = ("output", id)
            hsp = hs.pop()
            hsp = apply_control(hsp, control, 'output')
            if "output_block_patch" in transformer_patches:
                patch = transformer_patches["output_block_patch"]
                for p in patch:
                    h, hsp = p(h, hsp, transformer_options)
            h = torch.cat([h, hsp], dim=1)
            del hsp
            if len(hs) > 0:
                output_shape = hs[-1].shape
            else:
                output_shape = None
            for block_modifier in block_modifiers:
                h = block_modifier(h, 'before', transformer_options)
            h = module(h, emb, context, transformer_options, output_shape)
            for block_modifier in block_modifiers:
                h = block_modifier(h, 'after', transformer_options)
        transformer_options["block"] = ("last", 0)
        for block_modifier in block_modifiers:
            h = block_modifier(h, 'before', transformer_options)
        if "group_norm_wrapper" in transformer_options:
            out_norm, out_rest = self.out[0], self.out[1:]
            h = transformer_options["group_norm_wrapper"](out_norm, h, transformer_options)
            h = out_rest(h)
        else:
            h = self.out(h)
        for block_modifier in block_modifiers:
            h = block_modifier(h, 'after', transformer_options)
        return h.type(x.dtype)