File size: 2,118 Bytes
ad93086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import gguf
import torch


quants_mapping = {
    gguf.GGMLQuantizationType.Q2_K: gguf.Q2_K,
    gguf.GGMLQuantizationType.Q3_K: gguf.Q3_K,
    gguf.GGMLQuantizationType.Q4_0: gguf.Q4_0,
    gguf.GGMLQuantizationType.Q4_K: gguf.Q4_K,
    gguf.GGMLQuantizationType.Q4_1: gguf.Q4_1,
    gguf.GGMLQuantizationType.Q5_0: gguf.Q5_0,
    gguf.GGMLQuantizationType.Q5_1: gguf.Q5_1,
    gguf.GGMLQuantizationType.Q5_K: gguf.Q5_K,
    gguf.GGMLQuantizationType.Q6_K: gguf.Q6_K,
    gguf.GGMLQuantizationType.Q8_0: gguf.Q8_0,
}


class ParameterGGUF(torch.nn.Parameter):
    def __init__(self, tensor=None, requires_grad=False, no_init=False):
        super().__init__()
        if no_init:
            return

        self.gguf_cls = quants_mapping.get(tensor.tensor_type, None)
        self.real_shape = torch.Size(reversed(list(tensor.shape)))
        self.computation_dtype = torch.float16
        self.baked = False
        return

    @property
    def shape(self):
        return self.real_shape

    def __new__(cls, tensor=None, requires_grad=False, no_init=False):
        return super().__new__(cls, torch.tensor(tensor.data), requires_grad=requires_grad)

    def dequantize_as_pytorch_parameter(self):
        if self.gguf_cls is not None:
            self.gguf_cls.bake(self)
        return torch.nn.Parameter(dequantize_tensor(self), requires_grad=False)

    def copy_with_data(self, data):
        new = ParameterGGUF(data, no_init=True)
        new.gguf_cls = self.gguf_cls
        new.real_shape = self.real_shape
        new.computation_dtype = self.computation_dtype
        new.baked = self.baked
        return new

    def to(self, *args, **kwargs):
        return self.copy_with_data(self.data.to(*args, **kwargs))

    def pin_memory(self, device=None):
        return self.copy_with_data(torch.Tensor.pin_memory(self, device=device))


def dequantize_tensor(tensor):
    if tensor is None:
        return None

    if not hasattr(tensor, 'gguf_cls'):
        return tensor

    gguf_cls = tensor.gguf_cls

    if gguf_cls is None:
        return tensor

    return gguf_cls.dequantize_pytorch(tensor)