File size: 8,698 Bytes
ad93086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from modules_forge.initialization import initialize_forge

initialize_forge()

import sys
import types
import os
import torch
import inspect
import functools
import gradio.oauth
import gradio.routes
import contextlib

from backend import memory_management
from backend.operations import DynamicSwapInstaller
from diffusers.models import modeling_utils as diffusers_modeling_utils
from transformers import modeling_utils as transformers_modeling_utils
from backend.attention import AttentionProcessorForge
from starlette.requests import Request


_original_init = Request.__init__


def patched_init(self, scope, receive=None, send=None):
    if 'session' not in scope:
        scope['session'] = dict()
    _original_init(self, scope, receive, send)
    return


Request.__init__ = patched_init
gradio.oauth.attach_oauth = lambda x: None
gradio.routes.attach_oauth = lambda x: None

ALWAYS_SWAP = False

module_in_gpu: torch.nn.Module = None
gpu = memory_management.get_torch_device()
cpu = torch.device('cpu')

diffusers_modeling_utils.get_parameter_device = lambda *args, **kwargs: gpu
transformers_modeling_utils.get_parameter_device = lambda *args, **kwargs: gpu


def unload_module():
    global module_in_gpu

    if module_in_gpu is None:
        return

    DynamicSwapInstaller.uninstall_model(module_in_gpu)
    module_in_gpu.to(cpu)
    print(f'Move module to CPU: {type(module_in_gpu).__name__}')

    module_in_gpu = None
    memory_management.soft_empty_cache()
    return


def greedy_move_to_gpu(model, model_gpu_memory_when_using_cpu_swap):
    mem_counter = 0
    memory_in_swap = 0
    for m in model.modules():
        if hasattr(m, "weight"):
            module_mem = memory_management.module_size(m)
            if mem_counter + module_mem < model_gpu_memory_when_using_cpu_swap:
                m.to(gpu)
                mem_counter += module_mem
            else:
                m.to(cpu)
                memory_in_swap += module_mem

    print(f"[Memory Management] Loaded to CPU Swap: {memory_in_swap / (1024 * 1024):.2f} MB")
    print(f"[Memory Management] Loaded to GPU: {mem_counter / (1024 * 1024):.2f} MB")
    return


def load_module(m):
    global module_in_gpu

    if module_in_gpu == m:
        return

    unload_module()

    model_memory = memory_management.module_size(m)
    current_free_mem = memory_management.get_free_memory(gpu)
    inference_memory = 1.5 * 1024 * 1024 * 1024  # memory_management.minimum_inference_memory() # TODO: connect to main memory system
    estimated_remaining_memory = current_free_mem - model_memory - inference_memory

    print(f"[Memory Management] Current Free GPU Memory: {current_free_mem / (1024 * 1024):.2f} MB")
    print(f"[Memory Management] Required Model Memory: {model_memory / (1024 * 1024):.2f} MB")
    print(f"[Memory Management] Required Inference Memory: {inference_memory / (1024 * 1024):.2f} MB")
    print(f"[Memory Management] Estimated Remaining GPU Memory: {estimated_remaining_memory / (1024 * 1024):.2f} MB")

    is_torch_jit = 'ScriptModule' in type(m).__name__

    if is_torch_jit:
        print(f'Detected torch jit module: {type(m).__name__}')

    if (ALWAYS_SWAP or estimated_remaining_memory < 0) and not is_torch_jit:
        print(f'Move module to SWAP: {type(m).__name__}')
        DynamicSwapInstaller.install_model(m, target_device=gpu)
        model_gpu_memory_when_using_cpu_swap = memory_management.compute_model_gpu_memory_when_using_cpu_swap(current_free_mem, inference_memory)
        greedy_move_to_gpu(m, model_gpu_memory_when_using_cpu_swap)
    else:
        print(f'Move module to GPU: {type(m).__name__}')
        m.to(gpu)

    module_in_gpu = m
    return


class GPUObject:
    def __init__(self):
        self.module_list = []

    def __enter__(self):
        self.original_init = torch.nn.Module.__init__

        def patched_init(module, *args, **kwargs):
            self.module_list.append(module)
            return self.original_init(module, *args, **kwargs)

        torch.nn.Module.__init__ = patched_init
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        torch.nn.Module.__init__ = self.original_init
        self.module_list = list(set(self.module_list))
        self.to(device=torch.device('cpu'))
        memory_management.soft_empty_cache()
        return

    def to(self, device):
        for module in self.module_list:
            module.to(device)
        print(f'Forge Space: Moved {len(self.module_list)} Modules to {device}')
        return self

    def gpu(self):
        self.to(device=gpu)
        return self


def capture_gpu_object(capture=True):
    if capture:
        return GPUObject()
    else:
        return contextlib.nullcontext()


def GPU(gpu_objects=None, manual_load=False, **kwargs):
    gpu_objects = gpu_objects or []

    if not isinstance(gpu_objects, (list, tuple)):
        gpu_objects = [gpu_objects]

    def decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            print("Entering Forge Space GPU ...")
            memory_management.unload_all_models()
            if not manual_load:
                for o in gpu_objects:
                    o.gpu()
            result = func(*args, **kwargs)
            print("Cleaning Forge Space GPU ...")
            unload_module()
            for o in gpu_objects:
                o.to(device=torch.device('cpu'))
            memory_management.soft_empty_cache()
            return result
        return wrapper
    return decorator


def convert_root_path():
    frame = inspect.currentframe().f_back
    caller_file = frame.f_code.co_filename
    caller_file = os.path.abspath(caller_file)
    result = os.path.join(os.path.dirname(caller_file), 'huggingface_space_mirror')
    return result + '/'


def download_single_file(
    url: str,
    *,
    model_dir: str,
    progress: bool = True,
    file_name: str | None = None,
    hash_prefix: str | None = None,
) -> str:
    os.makedirs(model_dir, exist_ok=True)
    if not file_name:
        from urllib.parse import urlparse
        parts = urlparse(url)
        file_name = os.path.basename(parts.path)
    cached_file = os.path.abspath(os.path.join(model_dir, file_name))
    if not os.path.exists(cached_file):
        tmp_filename = cached_file + '.tmp'
        print(f'Downloading: "{url}" to {cached_file} using temp file {tmp_filename}\n')
        from torch.hub import download_url_to_file
        download_url_to_file(url, tmp_filename, progress=progress, hash_prefix=hash_prefix)
        os.replace(tmp_filename, cached_file)
    return cached_file


def automatically_move_to_gpu_when_forward(m: torch.nn.Module, target_model: torch.nn.Module = None):
    if target_model is None:
        target_model = m

    def patch_method(method_name):
        if not hasattr(m, method_name):
            return

        if not hasattr(m, 'forge_space_hooked_names'):
            m.forge_space_hooked_names = []

        if method_name in m.forge_space_hooked_names:
            print(f'Already hooked {type(m).__name__}.{method_name}')
            return

        print(f'Automatic hook: {type(m).__name__}.{method_name}')

        original_method = getattr(m, method_name)

        def patched_method(*args, **kwargs):
            load_module(target_model)
            return original_method(*args, **kwargs)

        setattr(m, method_name, patched_method)

        m.forge_space_hooked_names.append(method_name)
        return

    for method_name in ['forward', 'encode', 'decode']:
        patch_method(method_name)

    return


def automatically_move_pipeline_components(pipe):
    for attr_name in dir(pipe):
        attr_value = getattr(pipe, attr_name, None)
        if isinstance(attr_value, torch.nn.Module):
            automatically_move_to_gpu_when_forward(attr_value)
    return


def change_attention_from_diffusers_to_forge(m):
    m.set_attn_processor(AttentionProcessorForge())
    return


# diffusers version fix

import diffusers.models

diffusers.models.embeddings.PositionNet = diffusers.models.embeddings.GLIGENTextBoundingboxProjection

import diffusers.models.transformers.dual_transformer_2d
dual_transformer_2d = types.ModuleType('diffusers.models.dual_transformer_2d')
dual_transformer_2d.__dict__.update(diffusers.models.transformers.dual_transformer_2d.__dict__)
sys.modules['diffusers.models.dual_transformer_2d'] = dual_transformer_2d

import diffusers.models.transformers.transformer_2d
transformer_2d = types.ModuleType('diffusers.models.transformer_2d')
transformer_2d.__dict__.update(diffusers.models.transformers.transformer_2d.__dict__)
sys.modules['diffusers.models.transformer_2d'] = transformer_2d