Spaces:
Runtime error
Runtime error
File size: 8,289 Bytes
ad93086 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import torch
import math
from backend.attention import attention_pytorch as attention_function
activations = {
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
"relu": torch.nn.functional.relu,
}
class T5LayerNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.variance_epsilon)
return self.weight.to(x) * x
class T5DenseActDense(torch.nn.Module):
def __init__(self, model_dim, ff_dim, ff_activation):
super().__init__()
self.wi = torch.nn.Linear(model_dim, ff_dim, bias=False)
self.wo = torch.nn.Linear(ff_dim, model_dim, bias=False)
self.act = activations[ff_activation]
def forward(self, x):
x = self.act(self.wi(x))
x = self.wo(x)
return x
class T5DenseGatedActDense(torch.nn.Module):
def __init__(self, model_dim, ff_dim, ff_activation):
super().__init__()
self.wi_0 = torch.nn.Linear(model_dim, ff_dim, bias=False)
self.wi_1 = torch.nn.Linear(model_dim, ff_dim, bias=False)
self.wo = torch.nn.Linear(ff_dim, model_dim, bias=False)
self.act = activations[ff_activation]
def forward(self, x):
hidden_gelu = self.act(self.wi_0(x))
hidden_linear = self.wi_1(x)
x = hidden_gelu * hidden_linear
x = self.wo(x)
return x
class T5LayerFF(torch.nn.Module):
def __init__(self, model_dim, ff_dim, ff_activation, gated_act):
super().__init__()
if gated_act:
self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, ff_activation)
else:
self.DenseReluDense = T5DenseActDense(model_dim, ff_dim, ff_activation)
self.layer_norm = T5LayerNorm(model_dim)
def forward(self, x):
forwarded_states = self.layer_norm(x)
forwarded_states = self.DenseReluDense(forwarded_states)
x += forwarded_states
return x
class T5Attention(torch.nn.Module):
def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias):
super().__init__()
self.q = torch.nn.Linear(model_dim, inner_dim, bias=False)
self.k = torch.nn.Linear(model_dim, inner_dim, bias=False)
self.v = torch.nn.Linear(model_dim, inner_dim, bias=False)
self.o = torch.nn.Linear(inner_dim, model_dim, bias=False)
self.num_heads = num_heads
self.relative_attention_bias = None
if relative_attention_bias:
self.relative_attention_num_buckets = 32
self.relative_attention_max_distance = 128
self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
max_exact = num_buckets // 2
is_small = relative_position < max_exact
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device, dtype):
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position
relative_position_bucket = self._relative_position_bucket(
relative_position,
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket).to(dtype)
values = values.permute([2, 0, 1]).unsqueeze(0)
return values
def forward(self, x, mask=None, past_bias=None):
q = self.q(x)
k = self.k(x)
v = self.v(x)
if self.relative_attention_bias is not None:
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device, x.dtype)
if past_bias is not None:
if mask is not None:
mask = mask + past_bias
else:
mask = past_bias
out = attention_function(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask)
return self.o(out), past_bias
class T5LayerSelfAttention(torch.nn.Module):
def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias):
super().__init__()
self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias)
self.layer_norm = T5LayerNorm(model_dim)
def forward(self, x, mask=None, past_bias=None):
output, past_bias = self.SelfAttention(self.layer_norm(x), mask=mask, past_bias=past_bias)
x += output
return x, past_bias
class T5Block(torch.nn.Module):
def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias):
super().__init__()
self.layer = torch.nn.ModuleList()
self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias))
self.layer.append(T5LayerFF(model_dim, ff_dim, ff_activation, gated_act))
def forward(self, x, mask=None, past_bias=None):
x, past_bias = self.layer[0](x, mask, past_bias)
x = self.layer[-1](x)
return x, past_bias
class T5Stack(torch.nn.Module):
def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention):
super().__init__()
self.block = torch.nn.ModuleList(
[T5Block(model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias=((not relative_attention) or (i == 0))) for i in range(num_layers)]
)
self.final_layer_norm = T5LayerNorm(model_dim)
def forward(self, x, attention_mask=None):
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
past_bias = None
for i, l in enumerate(self.block):
x, past_bias = l(x, mask, past_bias)
x = self.final_layer_norm(x)
return x
class T5(torch.nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.num_layers = config["num_layers"]
model_dim = config["d_model"]
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config["d_ff"], config["dense_act_fn"], config["is_gated_act"], config["num_heads"], config["model_type"] != "umt5")
self.shared = torch.nn.Embedding(config["vocab_size"], model_dim)
def forward(self, input_ids, *args, **kwargs):
x = self.shared(input_ids)
x = torch.nan_to_num(x)
return self.encoder(x, *args, **kwargs)
class IntegratedT5(torch.nn.Module):
def __init__(self, config):
super().__init__()
self.transformer = T5(config)
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|