File size: 22,727 Bytes
ad93086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# Copyright Forge 2024

import time
import torch
import contextlib

from backend import stream, memory_management, utils
from backend.patcher.lora import merge_lora_to_weight


stash = {}


def get_weight_and_bias(layer, weight_args=None, bias_args=None, weight_fn=None, bias_fn=None):
    patches = getattr(layer, 'forge_online_loras', None)
    weight_patches, bias_patches = None, None

    if patches is not None:
        weight_patches = patches.get('weight', None)

    if patches is not None:
        bias_patches = patches.get('bias', None)

    weight = None
    if layer.weight is not None:
        weight = layer.weight
        if weight_fn is not None:
            if weight_args is not None:
                fn_device = weight_args.get('device', None)
                if fn_device is not None:
                    weight = weight.to(device=fn_device)
            weight = weight_fn(weight)
        if weight_args is not None:
            weight = weight.to(**weight_args)
        if weight_patches is not None:
            weight = merge_lora_to_weight(patches=weight_patches, weight=weight, key="online weight lora", computation_dtype=weight.dtype)

    bias = None
    if layer.bias is not None:
        bias = layer.bias
        if bias_fn is not None:
            if bias_args is not None:
                fn_device = bias_args.get('device', None)
                if fn_device is not None:
                    bias = bias.to(device=fn_device)
            bias = bias_fn(bias)
        if bias_args is not None:
            bias = bias.to(**bias_args)
        if bias_patches is not None:
            bias = merge_lora_to_weight(patches=bias_patches, weight=bias, key="online bias lora", computation_dtype=bias.dtype)
    return weight, bias


def weights_manual_cast(layer, x, skip_weight_dtype=False, skip_bias_dtype=False, weight_fn=None, bias_fn=None):
    weight, bias, signal = None, None, None
    non_blocking = True

    if getattr(x.device, 'type', None) == 'mps':
        non_blocking = False

    target_dtype = x.dtype
    target_device = x.device

    if skip_weight_dtype:
        weight_args = dict(device=target_device, non_blocking=non_blocking)
    else:
        weight_args = dict(device=target_device, dtype=target_dtype, non_blocking=non_blocking)

    if skip_bias_dtype:
        bias_args = dict(device=target_device, non_blocking=non_blocking)
    else:
        bias_args = dict(device=target_device, dtype=target_dtype, non_blocking=non_blocking)

    if stream.should_use_stream():
        with stream.stream_context()(stream.mover_stream):
            weight, bias = get_weight_and_bias(layer, weight_args, bias_args, weight_fn=weight_fn, bias_fn=bias_fn)
            signal = stream.mover_stream.record_event()
    else:
        weight, bias = get_weight_and_bias(layer, weight_args, bias_args, weight_fn=weight_fn, bias_fn=bias_fn)

    return weight, bias, signal


@contextlib.contextmanager
def main_stream_worker(weight, bias, signal):
    if signal is None or not stream.should_use_stream():
        yield
        return

    with stream.stream_context()(stream.current_stream):
        stream.current_stream.wait_event(signal)
        yield
        finished_signal = stream.current_stream.record_event()
        stash[id(finished_signal)] = (weight, bias, finished_signal)

    garbage = []
    for k, (w, b, s) in stash.items():
        if s.query():
            garbage.append(k)

    for k in garbage:
        del stash[k]
    return


def cleanup_cache():
    if not stream.should_use_stream():
        return

    stream.current_stream.synchronize()
    stream.mover_stream.synchronize()
    stash.clear()
    return


current_device = None
current_dtype = None
current_manual_cast_enabled = False
current_bnb_dtype = None


class ForgeOperations:
    class Linear(torch.nn.Module):
        def __init__(self, in_features, out_features, *args, **kwargs):
            super().__init__()
            self.in_features = in_features
            self.out_features = out_features
            self.dummy = torch.nn.Parameter(torch.empty(1, device=current_device, dtype=current_dtype))
            self.weight = None
            self.bias = None
            self.parameters_manual_cast = current_manual_cast_enabled

        def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
            if hasattr(self, 'dummy'):
                if prefix + 'weight' in state_dict:
                    self.weight = torch.nn.Parameter(state_dict[prefix + 'weight'].to(self.dummy))
                if prefix + 'bias' in state_dict:
                    self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
                del self.dummy
            else:
                super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.linear(x, weight, bias)
            else:
                weight, bias = get_weight_and_bias(self)
                return torch.nn.functional.linear(x, weight, bias)

    class Conv2d(torch.nn.Conv2d):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return self._conv_forward(x, weight, bias)
            else:
                weight, bias = get_weight_and_bias(self)
                return super()._conv_forward(x, weight, bias)

    class Conv3d(torch.nn.Conv3d):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return self._conv_forward(x, weight, bias)
            else:
                weight, bias = get_weight_and_bias(self)
                return super()._conv_forward(input, weight, bias)

    class Conv1d(torch.nn.Conv1d):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return self._conv_forward(x, weight, bias)
            else:
                weight, bias = get_weight_and_bias(self)
                return super()._conv_forward(input, weight, bias)

    class ConvTranspose2d(torch.nn.ConvTranspose2d):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x, output_size=None):
            if self.parameters_manual_cast:
                num_spatial_dims = 2
                output_padding = self._output_padding(x, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation)

                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.conv_transpose2d(x, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation)
            else:
                weight, bias = get_weight_and_bias(self)
                num_spatial_dims = 2
                output_padding = self._output_padding(x, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation)
                return torch.nn.functional.conv_transpose2d(x, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation)

    class ConvTranspose1d(torch.nn.ConvTranspose1d):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x, output_size=None):
            if self.parameters_manual_cast:
                num_spatial_dims = 1
                output_padding = self._output_padding(x, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation)

                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.conv_transpose1d(x, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation)
            else:
                weight, bias = get_weight_and_bias(self)
                num_spatial_dims = 1
                output_padding = self._output_padding(x, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation)
                return torch.nn.functional.conv_transpose2d(x, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation)

    class ConvTranspose3d(torch.nn.ConvTranspose3d):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x, output_size=None):
            if self.parameters_manual_cast:
                num_spatial_dims = 3
                output_padding = self._output_padding(x, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation)

                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.conv_transpose3d(x, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation)
            else:
                weight, bias = get_weight_and_bias(self)
                num_spatial_dims = 3
                output_padding = self._output_padding(x, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation)
                return torch.nn.functional.conv_transpose2d(x, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation)

    class GroupNorm(torch.nn.GroupNorm):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.group_norm(x, self.num_groups, weight, bias, self.eps)
            else:
                return super().forward(x)

    class LayerNorm(torch.nn.LayerNorm):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.layer_norm(x, self.normalized_shape, weight, bias, self.eps)
            else:
                return super().forward(x)

    class Embedding(torch.nn.Embedding):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled
            self.bias = None

        def reset_parameters(self):
            self.bias = None
            return None

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x, skip_weight_dtype=True, skip_bias_dtype=True)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.embedding(x, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse)
            else:
                return super().forward(x)


try:
    from backend.operations_bnb import ForgeLoader4Bit, ForgeParams4bit, functional_linear_4bits, functional_dequantize_4bit

    class ForgeOperationsBNB4bits(ForgeOperations):
        class Linear(ForgeLoader4Bit):
            def __init__(self, *args, **kwargs):
                super().__init__(device=current_device, dtype=current_dtype, quant_type=current_bnb_dtype)
                self.parameters_manual_cast = current_manual_cast_enabled

            def forward(self, x):
                if self.bias is not None and self.bias.dtype != x.dtype:
                    # Maybe this can also be set to all non-bnb ops since the cost is very low.
                    # And it only invokes one time, and most linear does not have bias
                    self.bias = utils.tensor2parameter(self.bias.to(x.dtype))

                if hasattr(self, 'forge_online_loras'):
                    weight, bias, signal = weights_manual_cast(self, x, weight_fn=functional_dequantize_4bit, bias_fn=None, skip_bias_dtype=True)
                    with main_stream_worker(weight, bias, signal):
                        return torch.nn.functional.linear(x, weight, bias)

                if not self.parameters_manual_cast:
                    return functional_linear_4bits(x, self.weight, self.bias)
                elif not self.weight.bnb_quantized:
                    assert x.device.type == 'cuda', 'BNB Must Use CUDA as Computation Device!'
                    layer_original_device = self.weight.device
                    self.weight = self.weight._quantize(x.device)
                    bias = self.bias.to(x.device) if self.bias is not None else None
                    out = functional_linear_4bits(x, self.weight, bias)
                    self.weight = self.weight.to(layer_original_device)
                    return out
                else:
                    weight, bias, signal = weights_manual_cast(self, x, skip_weight_dtype=True, skip_bias_dtype=True)
                    with main_stream_worker(weight, bias, signal):
                        return functional_linear_4bits(x, weight, bias)

    bnb_avaliable = True
except:
    bnb_avaliable = False


from backend.operations_gguf import dequantize_tensor


class ForgeOperationsGGUF(ForgeOperations):
    class Linear(torch.nn.Module):
        def __init__(self, *args, **kwargs):
            super().__init__()
            self.dummy = torch.nn.Parameter(torch.empty(1, device=current_device, dtype=current_dtype))
            self.weight = None
            self.bias = None
            self.parameters_manual_cast = current_manual_cast_enabled

        def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
            if hasattr(self, 'dummy'):
                computation_dtype = self.dummy.dtype
                if computation_dtype not in [torch.float16, torch.bfloat16]:
                    # GGUF cast only supports 16bits otherwise super slow
                    computation_dtype = torch.float16
                if prefix + 'weight' in state_dict:
                    self.weight = state_dict[prefix + 'weight'].to(device=self.dummy.device)
                    self.weight.computation_dtype = computation_dtype
                if prefix + 'bias' in state_dict:
                    self.bias = state_dict[prefix + 'bias'].to(device=self.dummy.device)
                    self.bias.computation_dtype = computation_dtype
                del self.dummy
            else:
                if prefix + 'weight' in state_dict:
                    self.weight = state_dict[prefix + 'weight']
                if prefix + 'bias' in state_dict:
                    self.bias = state_dict[prefix + 'bias']
            return

        def _apply(self, fn, recurse=True):
            for k, p in self.named_parameters(recurse=False, remove_duplicate=True):
                setattr(self, k, utils.tensor2parameter(fn(p)))
            return self

        def forward(self, x):
            if self.bias is not None and self.bias.dtype != x.dtype:
                self.bias = utils.tensor2parameter(dequantize_tensor(self.bias).to(x.dtype))

            if self.weight is not None and self.weight.dtype != x.dtype and getattr(self.weight, 'gguf_cls', None) is None:
                self.weight = utils.tensor2parameter(self.weight.to(x.dtype))

            weight, bias, signal = weights_manual_cast(self, x, weight_fn=dequantize_tensor, bias_fn=None, skip_bias_dtype=True)
            with main_stream_worker(weight, bias, signal):
                return torch.nn.functional.linear(x, weight, bias)


@contextlib.contextmanager
def using_forge_operations(operations=None, device=None, dtype=None, manual_cast_enabled=False, bnb_dtype=None):
    global current_device, current_dtype, current_manual_cast_enabled, current_bnb_dtype

    current_device, current_dtype, current_manual_cast_enabled, current_bnb_dtype = device, dtype, manual_cast_enabled, bnb_dtype

    if operations is None:
        if bnb_dtype in ['gguf']:
            operations = ForgeOperationsGGUF
        elif bnb_avaliable and bnb_dtype in ['nf4', 'fp4']:
            operations = ForgeOperationsBNB4bits
        else:
            operations = ForgeOperations

    op_names = ['Linear', 'Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d', 'GroupNorm', 'LayerNorm', 'Embedding']
    backups = {op_name: getattr(torch.nn, op_name) for op_name in op_names}

    try:
        for op_name in op_names:
            setattr(torch.nn, op_name, getattr(operations, op_name))

        yield

    finally:
        for op_name in op_names:
            setattr(torch.nn, op_name, backups[op_name])
    return


def shift_manual_cast(model, enabled):
    for m in model.modules():
        if hasattr(m, 'parameters_manual_cast'):
            m.parameters_manual_cast = enabled
    return


@contextlib.contextmanager
def automatic_memory_management():
    memory_management.free_memory(
        memory_required=3 * 1024 * 1024 * 1024,
        device=memory_management.get_torch_device()
    )

    module_list = []

    original_init = torch.nn.Module.__init__
    original_to = torch.nn.Module.to

    def patched_init(self, *args, **kwargs):
        module_list.append(self)
        return original_init(self, *args, **kwargs)

    def patched_to(self, *args, **kwargs):
        module_list.append(self)
        return original_to(self, *args, **kwargs)

    try:
        torch.nn.Module.__init__ = patched_init
        torch.nn.Module.to = patched_to
        yield
    finally:
        torch.nn.Module.__init__ = original_init
        torch.nn.Module.to = original_to

    start = time.perf_counter()
    module_list = set(module_list)

    for module in module_list:
        module.cpu()

    memory_management.soft_empty_cache()
    end = time.perf_counter()

    print(f'Automatic Memory Management: {len(module_list)} Modules in {(end - start):.2f} seconds.')
    return


class DynamicSwapInstaller:
    @staticmethod
    def _install_module(module: torch.nn.Module, target_device: torch.device):
        original_class = module.__class__
        module.__dict__['forge_backup_original_class'] = original_class

        def hacked_get_attr(self, name: str):
            if '_parameters' in self.__dict__:
                _parameters = self.__dict__['_parameters']
                if name in _parameters:
                    p = _parameters[name]
                    if p is None:
                        return None
                    if p.__class__ == torch.nn.Parameter:
                        return torch.nn.Parameter(p.to(target_device), requires_grad=p.requires_grad)
                    else:
                        return p.to(target_device)
            if '_buffers' in self.__dict__:
                _buffers = self.__dict__['_buffers']
                if name in _buffers:
                    return _buffers[name].to(target_device)
            return super(original_class, self).__getattr__(name)

        module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), {
            '__getattr__': hacked_get_attr,
        })

        return

    @staticmethod
    def _uninstall_module(module: torch.nn.Module):
        if 'forge_backup_original_class' in module.__dict__:
            module.__class__ = module.__dict__.pop('forge_backup_original_class')
        return

    @staticmethod
    def install_model(model: torch.nn.Module, target_device: torch.device):
        for m in model.modules():
            DynamicSwapInstaller._install_module(m, target_device)
        return

    @staticmethod
    def uninstall_model(model: torch.nn.Module):
        for m in model.modules():
            DynamicSwapInstaller._uninstall_module(m)
        return