Spaces:
Runtime error
Runtime error
File size: 3,738 Bytes
ad93086 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import torch
import math
def repeat_to_batch_size(tensor, batch_size):
if tensor.shape[0] > batch_size:
return tensor[:batch_size]
elif tensor.shape[0] < batch_size:
return tensor.repeat([math.ceil(batch_size / tensor.shape[0])] + [1] * (len(tensor.shape) - 1))[:batch_size]
return tensor
def lcm(a, b):
return abs(a * b) // math.gcd(a, b)
class Condition:
def __init__(self, cond):
self.cond = cond
def _copy_with(self, cond):
return self.__class__(cond)
def process_cond(self, batch_size, device, **kwargs):
return self._copy_with(repeat_to_batch_size(self.cond, batch_size).to(device))
def can_concat(self, other):
if self.cond.shape != other.cond.shape:
return False
return True
def concat(self, others):
conds = [self.cond]
for x in others:
conds.append(x.cond)
return torch.cat(conds)
class ConditionNoiseShape(Condition):
def process_cond(self, batch_size, device, area, **kwargs):
data = self.cond[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]]
return self._copy_with(repeat_to_batch_size(data, batch_size).to(device))
class ConditionCrossAttn(Condition):
def can_concat(self, other):
s1 = self.cond.shape
s2 = other.cond.shape
if s1 != s2:
if s1[0] != s2[0] or s1[2] != s2[2]:
return False
mult_min = lcm(s1[1], s2[1])
diff = mult_min // min(s1[1], s2[1])
if diff > 4:
return False
return True
def concat(self, others):
conds = [self.cond]
crossattn_max_len = self.cond.shape[1]
for x in others:
c = x.cond
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
conds.append(c)
out = []
for c in conds:
if c.shape[1] < crossattn_max_len:
c = c.repeat(1, crossattn_max_len // c.shape[1], 1)
out.append(c)
return torch.cat(out)
class ConditionConstant(Condition):
def __init__(self, cond):
self.cond = cond
def process_cond(self, batch_size, device, **kwargs):
return self._copy_with(self.cond)
def can_concat(self, other):
if self.cond != other.cond:
return False
return True
def concat(self, others):
return self.cond
def compile_conditions(cond):
if cond is None:
return None
if isinstance(cond, torch.Tensor):
result = dict(
cross_attn=cond,
model_conds=dict(
c_crossattn=ConditionCrossAttn(cond),
)
)
return [result, ]
cross_attn = cond['crossattn']
pooled_output = cond['vector']
result = dict(
cross_attn=cross_attn,
pooled_output=pooled_output,
model_conds=dict(
c_crossattn=ConditionCrossAttn(cross_attn),
y=Condition(pooled_output)
)
)
if 'guidance' in cond:
result['model_conds']['guidance'] = Condition(cond['guidance'])
return [result, ]
def compile_weighted_conditions(cond, weights):
transposed = list(map(list, zip(*weights)))
results = []
for cond_pre in transposed:
current_indices = []
current_weight = 0
for i, w in cond_pre:
current_indices.append(i)
current_weight = w
if hasattr(cond, 'advanced_indexing'):
feed = cond.advanced_indexing(current_indices)
else:
feed = cond[current_indices]
h = compile_conditions(feed)
h[0]['strength'] = current_weight
results += h
return results
|