File size: 13,294 Bytes
ad93086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
from typing import Optional
from modules import processing

from lib_controlnet import external_code

from modules_forge.utils import HWC3

from PIL import Image, ImageFilter, ImageOps
from lib_controlnet.lvminthin import lvmin_thin, nake_nms

import torch
import os
import functools
import time
import base64
import numpy as np
import safetensors.torch
import cv2
import logging

from typing import Any, Callable, Dict, List
from lib_controlnet.logging import logger


def load_state_dict(ckpt_path, location="cpu"):
    _, extension = os.path.splitext(ckpt_path)
    if extension.lower() == ".safetensors":
        state_dict = safetensors.torch.load_file(ckpt_path, device=location)
    else:
        state_dict = torch.load(ckpt_path, map_location=torch.device(location))
    state_dict = get_state_dict(state_dict)
    logger.info(f"Loaded state_dict from [{ckpt_path}]")
    return state_dict


def get_state_dict(d):
    return d.get("state_dict", d)


def ndarray_lru_cache(max_size: int = 128, typed: bool = False):
    """
    Decorator to enable caching for functions with numpy array arguments.
    Numpy arrays are mutable, and thus not directly usable as hash keys.

    The idea here is to wrap the incoming arguments with type `np.ndarray`
    as `HashableNpArray` so that `lru_cache` can correctly handles `np.ndarray`
    arguments.

    `HashableNpArray` functions exactly the same way as `np.ndarray` except
    having `__hash__` and `__eq__` overriden.
    """

    def decorator(func: Callable):
        """The actual decorator that accept function as input."""

        class HashableNpArray(np.ndarray):
            def __new__(cls, input_array):
                # Input array is an instance of ndarray.
                # The view makes the input array and returned array share the same data.
                obj = np.asarray(input_array).view(cls)
                return obj

            def __eq__(self, other) -> bool:
                return np.array_equal(self, other)

            def __hash__(self):
                # Hash the bytes representing the data of the array.
                return hash(self.tobytes())

        @functools.lru_cache(maxsize=max_size, typed=typed)
        def cached_func(*args, **kwargs):
            """This function only accepts `HashableNpArray` as input params."""
            return func(*args, **kwargs)

        # Preserves original function.__name__ and __doc__.
        @functools.wraps(func)
        def decorated_func(*args, **kwargs):
            """The decorated function that delegates the original function."""

            def convert_item(item: Any):
                if isinstance(item, np.ndarray):
                    return HashableNpArray(item)
                if isinstance(item, tuple):
                    return tuple(convert_item(i) for i in item)
                return item

            args = [convert_item(arg) for arg in args]
            kwargs = {k: convert_item(arg) for k, arg in kwargs.items()}
            return cached_func(*args, **kwargs)

        return decorated_func

    return decorator


def timer_decorator(func):
    """Time the decorated function and output the result to debug logger."""
    if logger.level != logging.DEBUG:
        return func

    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        duration = end_time - start_time
        # Only report function that are significant enough.
        if duration > 1e-3:
            logger.debug(f"{func.__name__} ran in: {duration:.3f} sec")
        return result

    return wrapper


class TimeMeta(type):
    """ Metaclass to record execution time on all methods of the
    child class. """
    def __new__(cls, name, bases, attrs):
        for attr_name, attr_value in attrs.items():
            if callable(attr_value):
                attrs[attr_name] = timer_decorator(attr_value)
        return super().__new__(cls, name, bases, attrs)


# svgsupports
svgsupport = False
try:
    import io
    from svglib.svglib import svg2rlg
    from reportlab.graphics import renderPM

    svgsupport = True
except ImportError:
    pass


def svg_preprocess(inputs: Dict, preprocess: Callable):
    if not inputs:
        return None

    if inputs["image"].startswith("data:image/svg+xml;base64,") and svgsupport:
        svg_data = base64.b64decode(
            inputs["image"].replace("data:image/svg+xml;base64,", "")
        )
        drawing = svg2rlg(io.BytesIO(svg_data))
        png_data = renderPM.drawToString(drawing, fmt="PNG")
        encoded_string = base64.b64encode(png_data)
        base64_str = str(encoded_string, "utf-8")
        base64_str = "data:image/png;base64," + base64_str
        inputs["image"] = base64_str
    return preprocess(inputs)


def get_unique_axis0(data):
    arr = np.asanyarray(data)
    idxs = np.lexsort(arr.T)
    arr = arr[idxs]
    unique_idxs = np.empty(len(arr), dtype=np.bool_)
    unique_idxs[:1] = True
    unique_idxs[1:] = np.any(arr[:-1, :] != arr[1:, :], axis=-1)
    return arr[unique_idxs]


def read_image(img_path: str) -> str:
    """Read image from specified path and return a base64 string."""
    img = cv2.imread(img_path)
    _, bytes = cv2.imencode(".png", img)
    encoded_image = base64.b64encode(bytes).decode("utf-8")
    return encoded_image


def read_image_dir(img_dir: str, suffixes=('.png', '.jpg', '.jpeg', '.webp')) -> List[str]:
    """Try read all images in given img_dir."""
    images = []
    for filename in os.listdir(img_dir):
        if filename.endswith(suffixes):
            img_path = os.path.join(img_dir, filename)
            try:
                images.append(read_image(img_path))
            except IOError:
                logger.error(f"Error opening {img_path}")
    return images


def align_dim_latent(x: int) -> int:
    """ Align the pixel dimension (w/h) to latent dimension.
    Stable diffusion 1:8 ratio for latent/pixel, i.e.,
    1 latent unit == 8 pixel unit."""
    return (x // 8) * 8


def prepare_mask(
    mask: Image.Image, p: processing.StableDiffusionProcessing
) -> Image.Image:
    """
    Prepare an image mask for the inpainting process.

    This function takes as input a PIL Image object and an instance of the
    StableDiffusionProcessing class, and performs the following steps to prepare the mask:

    1. Convert the mask to grayscale (mode "L").
    2. If the 'inpainting_mask_invert' attribute of the processing instance is True,
       invert the mask colors.
    3. If the 'mask_blur' attribute of the processing instance is greater than 0,
       apply a Gaussian blur to the mask with a radius equal to 'mask_blur'.

    Args:
        mask (Image.Image): The input mask as a PIL Image object.
        p (processing.StableDiffusionProcessing): An instance of the StableDiffusionProcessing class
                                                   containing the processing parameters.

    Returns:
        mask (Image.Image): The prepared mask as a PIL Image object.
    """
    mask = mask.convert("L")
    if getattr(p, "inpainting_mask_invert", False):
        mask = ImageOps.invert(mask)

    if hasattr(p, 'mask_blur_x'):
        if getattr(p, "mask_blur_x", 0) > 0:
            np_mask = np.array(mask)
            kernel_size = 2 * int(2.5 * p.mask_blur_x + 0.5) + 1
            np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), p.mask_blur_x)
            mask = Image.fromarray(np_mask)
        if getattr(p, "mask_blur_y", 0) > 0:
            np_mask = np.array(mask)
            kernel_size = 2 * int(2.5 * p.mask_blur_y + 0.5) + 1
            np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), p.mask_blur_y)
            mask = Image.fromarray(np_mask)
    else:
        if getattr(p, "mask_blur", 0) > 0:
            mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))

    return mask


def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]:
    """
    Set the random seed for NumPy based on the provided parameters.

    Args:
        p (processing.StableDiffusionProcessing): The instance of the StableDiffusionProcessing class.

    Returns:
        Optional[int]: The computed random seed if successful, or None if an exception occurs.

    This function sets the random seed for NumPy using the seed and subseed values from the given instance of
    StableDiffusionProcessing. If either seed or subseed is -1, it uses the first value from `all_seeds`.
    Otherwise, it takes the maximum of the provided seed value and 0.

    The final random seed is computed by adding the seed and subseed values, applying a bitwise AND operation
    with 0xFFFFFFFF to ensure it fits within a 32-bit integer.
    """
    try:
        tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
        tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
        seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF
        np.random.seed(seed)
        return seed
    except Exception as e:
        logger.warning(e)
        logger.warning('Warning: Failed to use consistent random seed.')
        return None


def safe_numpy(x):
    # A very safe method to make sure that Apple/Mac works
    y = x

    # below is very boring but do not change these. If you change these Apple or Mac may fail.
    y = y.copy()
    y = np.ascontiguousarray(y)
    y = y.copy()
    return y


def high_quality_resize(x, size):
    # Written by lvmin
    # Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges

    if x.shape[0] != size[1] or x.shape[1] != size[0]:
        new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
        new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
        unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2])))
        is_one_pixel_edge = False
        is_binary = False
        if unique_color_count == 2:
            is_binary = np.min(x) < 16 and np.max(x) > 240
            if is_binary:
                xc = x
                xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
                xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
                one_pixel_edge_count = np.where(xc < x)[0].shape[0]
                all_edge_count = np.where(x > 127)[0].shape[0]
                is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count

        if 2 < unique_color_count < 200:
            interpolation = cv2.INTER_NEAREST
        elif new_size_is_smaller:
            interpolation = cv2.INTER_AREA
        else:
            interpolation = cv2.INTER_CUBIC  # Must be CUBIC because we now use nms. NEVER CHANGE THIS

        y = cv2.resize(x, size, interpolation=interpolation)

        if is_binary:
            y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
            if is_one_pixel_edge:
                y = nake_nms(y)
                _, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
                y = lvmin_thin(y, prunings=new_size_is_bigger)
            else:
                _, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
            y = np.stack([y] * 3, axis=2)
    else:
        y = x

    return y


def crop_and_resize_image(detected_map, resize_mode, h, w, fill_border_with_255=False):
    if resize_mode == external_code.ResizeMode.RESIZE:
        detected_map = high_quality_resize(detected_map, (w, h))
        detected_map = safe_numpy(detected_map)
        return detected_map

    old_h, old_w, _ = detected_map.shape
    old_w = float(old_w)
    old_h = float(old_h)
    k0 = float(h) / old_h
    k1 = float(w) / old_w

    safeint = lambda x: int(np.round(x))

    if resize_mode == external_code.ResizeMode.OUTER_FIT:
        k = min(k0, k1)
        borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
        high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
        if fill_border_with_255:
            high_quality_border_color = np.zeros_like(high_quality_border_color) + 255
        high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
        detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
        new_h, new_w, _ = detected_map.shape
        pad_h = max(0, (h - new_h) // 2)
        pad_w = max(0, (w - new_w) // 2)
        high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
        detected_map = high_quality_background
        detected_map = safe_numpy(detected_map)
        return detected_map
    else:
        k = max(k0, k1)
        detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
        new_h, new_w, _ = detected_map.shape
        pad_h = max(0, (new_h - h) // 2)
        pad_w = max(0, (new_w - w) // 2)
        detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
        detected_map = safe_numpy(detected_map)
        return detected_map


def judge_image_type(img):
    return isinstance(img, np.ndarray) and img.ndim == 3 and int(img.shape[2]) in [3, 4]