Spaces:
Runtime error
Runtime error
# Single File Implementation of Flux with aggressive optimizations, Copyright Forge 2024 | |
# If used outside Forge, only non-commercial use is allowed. | |
# See also https://github.com/black-forest-labs/flux | |
import math | |
import torch | |
from torch import nn | |
from einops import rearrange, repeat | |
from backend.attention import attention_function | |
from backend.utils import fp16_fix, tensor2parameter | |
def attention(q, k, v, pe): | |
q, k = apply_rope(q, k, pe) | |
x = attention_function(q, k, v, q.shape[1], skip_reshape=True) | |
return x | |
def rope(pos, dim, theta): | |
if pos.device.type == "mps" or pos.device.type == "xpu": | |
scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim | |
else: | |
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim | |
omega = 1.0 / (theta ** scale) | |
# out = torch.einsum("...n,d->...nd", pos, omega) | |
out = pos.unsqueeze(-1) * omega.unsqueeze(0) | |
cos_out = torch.cos(out) | |
sin_out = torch.sin(out) | |
out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) | |
del cos_out, sin_out | |
# out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) | |
b, n, d, _ = out.shape | |
out = out.view(b, n, d, 2, 2) | |
return out.float() | |
def apply_rope(xq, xk, freqs_cis): | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
del xq_, xk_ | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
def timestep_embedding(t, dim, max_period=10000, time_factor=1000.0): | |
t = time_factor * t | |
half = dim // 2 | |
# TODO: Once A trainer for flux get popular, make timestep_embedding consistent to that trainer | |
# Do not block CUDA steam, but having about 1e-4 differences with Flux official codes: | |
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half) | |
# Block CUDA steam, but consistent with official codes: | |
# freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device) | |
args = t[:, None].float() * freqs[None] | |
del freqs | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
del args | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
if torch.is_floating_point(t): | |
embedding = embedding.to(t) | |
return embedding | |
class EmbedND(nn.Module): | |
def __init__(self, dim, theta, axes_dim): | |
super().__init__() | |
self.dim = dim | |
self.theta = theta | |
self.axes_dim = axes_dim | |
def forward(self, ids): | |
n_axes = ids.shape[-1] | |
emb = torch.cat( | |
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | |
dim=-3, | |
) | |
del ids, n_axes | |
return emb.unsqueeze(1) | |
class MLPEmbedder(nn.Module): | |
def __init__(self, in_dim, hidden_dim): | |
super().__init__() | |
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) | |
self.silu = nn.SiLU() | |
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) | |
def forward(self, x): | |
x = self.silu(self.in_layer(x)) | |
return self.out_layer(x) | |
if hasattr(torch, 'rms_norm'): | |
functional_rms_norm = torch.rms_norm | |
else: | |
def functional_rms_norm(x, normalized_shape, weight, eps): | |
if x.dtype in [torch.bfloat16, torch.float32]: | |
n = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + eps) * weight | |
else: | |
n = torch.rsqrt(torch.mean(x.float() ** 2, dim=-1, keepdim=True) + eps).to(x.dtype) * weight | |
return x * n | |
class RMSNorm(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.weight = None # to trigger module_profile | |
self.scale = nn.Parameter(torch.ones(dim)) | |
self.eps = 1e-6 | |
self.normalized_shape = [dim] | |
def forward(self, x): | |
if self.scale.dtype != x.dtype: | |
self.scale = tensor2parameter(self.scale.to(dtype=x.dtype)) | |
return functional_rms_norm(x, self.normalized_shape, self.scale, self.eps) | |
class QKNorm(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.query_norm = RMSNorm(dim) | |
self.key_norm = RMSNorm(dim) | |
def forward(self, q, k, v): | |
del v | |
q = self.query_norm(q) | |
k = self.key_norm(k) | |
return q.to(k), k.to(q) | |
class SelfAttention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.norm = QKNorm(head_dim) | |
self.proj = nn.Linear(dim, dim) | |
def forward(self, x, pe): | |
qkv = self.qkv(x) | |
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
B, L, _ = qkv.shape | |
qkv = qkv.view(B, L, 3, self.num_heads, -1) | |
q, k, v = qkv.permute(2, 0, 3, 1, 4) | |
del qkv | |
q, k = self.norm(q, k, v) | |
x = attention(q, k, v, pe=pe) | |
del q, k, v | |
x = self.proj(x) | |
return x | |
class Modulation(nn.Module): | |
def __init__(self, dim, double): | |
super().__init__() | |
self.is_double = double | |
self.multiplier = 6 if double else 3 | |
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) | |
def forward(self, vec): | |
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) | |
return out | |
class DoubleStreamBlock(nn.Module): | |
def __init__(self, hidden_size, num_heads, mlp_ratio, qkv_bias=False): | |
super().__init__() | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.img_mod = Modulation(hidden_size, double=True) | |
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
self.txt_mod = Modulation(hidden_size, double=True) | |
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
def forward(self, img, txt, vec, pe): | |
img_mod1_shift, img_mod1_scale, img_mod1_gate, img_mod2_shift, img_mod2_scale, img_mod2_gate = self.img_mod(vec) | |
img_modulated = self.img_norm1(img) | |
img_modulated = (1 + img_mod1_scale) * img_modulated + img_mod1_shift | |
del img_mod1_shift, img_mod1_scale | |
img_qkv = self.img_attn.qkv(img_modulated) | |
del img_modulated | |
# img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
B, L, _ = img_qkv.shape | |
H = self.num_heads | |
D = img_qkv.shape[-1] // (3 * H) | |
img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4) | |
del img_qkv | |
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) | |
txt_mod1_shift, txt_mod1_scale, txt_mod1_gate, txt_mod2_shift, txt_mod2_scale, txt_mod2_gate = self.txt_mod(vec) | |
del vec | |
txt_modulated = self.txt_norm1(txt) | |
txt_modulated = (1 + txt_mod1_scale) * txt_modulated + txt_mod1_shift | |
del txt_mod1_shift, txt_mod1_scale | |
txt_qkv = self.txt_attn.qkv(txt_modulated) | |
del txt_modulated | |
# txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
B, L, _ = txt_qkv.shape | |
txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4) | |
del txt_qkv | |
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) | |
q = torch.cat((txt_q, img_q), dim=2) | |
del txt_q, img_q | |
k = torch.cat((txt_k, img_k), dim=2) | |
del txt_k, img_k | |
v = torch.cat((txt_v, img_v), dim=2) | |
del txt_v, img_v | |
attn = attention(q, k, v, pe=pe) | |
del pe, q, k, v | |
txt_attn, img_attn = attn[:, :txt.shape[1]], attn[:, txt.shape[1]:] | |
del attn | |
img = img + img_mod1_gate * self.img_attn.proj(img_attn) | |
del img_attn, img_mod1_gate | |
img = img + img_mod2_gate * self.img_mlp((1 + img_mod2_scale) * self.img_norm2(img) + img_mod2_shift) | |
del img_mod2_gate, img_mod2_scale, img_mod2_shift | |
txt = txt + txt_mod1_gate * self.txt_attn.proj(txt_attn) | |
del txt_attn, txt_mod1_gate | |
txt = txt + txt_mod2_gate * self.txt_mlp((1 + txt_mod2_scale) * self.txt_norm2(txt) + txt_mod2_shift) | |
del txt_mod2_gate, txt_mod2_scale, txt_mod2_shift | |
txt = fp16_fix(txt) | |
return img, txt | |
class SingleStreamBlock(nn.Module): | |
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, qk_scale=None): | |
super().__init__() | |
self.hidden_dim = hidden_size | |
self.num_heads = num_heads | |
head_dim = hidden_size // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) | |
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) | |
self.norm = QKNorm(head_dim) | |
self.hidden_size = hidden_size | |
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.mlp_act = nn.GELU(approximate="tanh") | |
self.modulation = Modulation(hidden_size, double=False) | |
def forward(self, x, vec, pe): | |
mod_shift, mod_scale, mod_gate = self.modulation(vec) | |
del vec | |
x_mod = (1 + mod_scale) * self.pre_norm(x) + mod_shift | |
del mod_shift, mod_scale | |
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) | |
del x_mod | |
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads) | |
q, k, v = qkv.permute(2, 0, 3, 1, 4) | |
del qkv | |
q, k = self.norm(q, k, v) | |
attn = attention(q, k, v, pe=pe) | |
del q, k, v, pe | |
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), dim=2)) | |
del attn, mlp | |
x = x + mod_gate * output | |
del mod_gate, output | |
x = fp16_fix(x) | |
return x | |
class LastLayer(nn.Module): | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) | |
def forward(self, x, vec): | |
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) | |
del vec | |
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] | |
del scale, shift | |
x = self.linear(x) | |
return x | |
class IntegratedFluxTransformer2DModel(nn.Module): | |
def __init__(self, in_channels: int, vec_in_dim: int, context_in_dim: int, hidden_size: int, mlp_ratio: float, num_heads: int, depth: int, depth_single_blocks: int, axes_dim: list[int], theta: int, qkv_bias: bool, guidance_embed: bool): | |
super().__init__() | |
self.guidance_embed = guidance_embed | |
self.in_channels = in_channels * 4 | |
self.out_channels = self.in_channels | |
if hidden_size % num_heads != 0: | |
raise ValueError(f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}") | |
pe_dim = hidden_size // num_heads | |
if sum(axes_dim) != pe_dim: | |
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}") | |
self.hidden_size = hidden_size | |
self.num_heads = num_heads | |
self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim=axes_dim) | |
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size) | |
self.guidance_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if guidance_embed else nn.Identity() | |
self.txt_in = nn.Linear(context_in_dim, self.hidden_size) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
) | |
for _ in range(depth) | |
] | |
) | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio) | |
for _ in range(depth_single_blocks) | |
] | |
) | |
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | |
def inner_forward(self, img, img_ids, txt, txt_ids, timesteps, y, guidance=None): | |
if img.ndim != 3 or txt.ndim != 3: | |
raise ValueError("Input img and txt tensors must have 3 dimensions.") | |
img = self.img_in(img) | |
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype)) | |
if self.guidance_embed: | |
if guidance is None: | |
raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype)) | |
vec = vec + self.vector_in(y) | |
txt = self.txt_in(txt) | |
del y, guidance | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
del txt_ids, img_ids | |
pe = self.pe_embedder(ids) | |
del ids | |
for block in self.double_blocks: | |
img, txt = block(img=img, txt=txt, vec=vec, pe=pe) | |
img = torch.cat((txt, img), 1) | |
for block in self.single_blocks: | |
img = block(img, vec=vec, pe=pe) | |
del pe | |
img = img[:, txt.shape[1]:, ...] | |
del txt | |
img = self.final_layer(img, vec) | |
del vec | |
return img | |
def forward(self, x, timestep, context, y, guidance=None, **kwargs): | |
bs, c, h, w = x.shape | |
input_device = x.device | |
input_dtype = x.dtype | |
patch_size = 2 | |
pad_h = (patch_size - x.shape[-2] % patch_size) % patch_size | |
pad_w = (patch_size - x.shape[-1] % patch_size) % patch_size | |
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode="circular") | |
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size) | |
del x, pad_h, pad_w | |
h_len = ((h + (patch_size // 2)) // patch_size) | |
w_len = ((w + (patch_size // 2)) // patch_size) | |
img_ids = torch.zeros((h_len, w_len, 3), device=input_device, dtype=input_dtype) | |
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=input_device, dtype=input_dtype)[:, None] | |
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=input_device, dtype=input_dtype)[None, :] | |
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) | |
txt_ids = torch.zeros((bs, context.shape[1], 3), device=input_device, dtype=input_dtype) | |
del input_device, input_dtype | |
out = self.inner_forward(img, img_ids, context, txt_ids, timestep, y, guidance) | |
del img, img_ids, txt_ids, timestep, context | |
out = rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:, :, :h, :w] | |
del h_len, w_len, bs | |
return out | |