NilEneb's picture
Upload folder using huggingface_hub
ad93086 verified
raw
history blame
16.5 kB
# Single File Implementation of Flux with aggressive optimizations, Copyright Forge 2024
# If used outside Forge, only non-commercial use is allowed.
# See also https://github.com/black-forest-labs/flux
import math
import torch
from torch import nn
from einops import rearrange, repeat
from backend.attention import attention_function
from backend.utils import fp16_fix, tensor2parameter
def attention(q, k, v, pe):
q, k = apply_rope(q, k, pe)
x = attention_function(q, k, v, q.shape[1], skip_reshape=True)
return x
def rope(pos, dim, theta):
if pos.device.type == "mps" or pos.device.type == "xpu":
scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim
else:
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta ** scale)
# out = torch.einsum("...n,d->...nd", pos, omega)
out = pos.unsqueeze(-1) * omega.unsqueeze(0)
cos_out = torch.cos(out)
sin_out = torch.sin(out)
out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
del cos_out, sin_out
# out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
b, n, d, _ = out.shape
out = out.view(b, n, d, 2, 2)
return out.float()
def apply_rope(xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
del xq_, xk_
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def timestep_embedding(t, dim, max_period=10000, time_factor=1000.0):
t = time_factor * t
half = dim // 2
# TODO: Once A trainer for flux get popular, make timestep_embedding consistent to that trainer
# Do not block CUDA steam, but having about 1e-4 differences with Flux official codes:
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
# Block CUDA steam, but consistent with official codes:
# freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
args = t[:, None].float() * freqs[None]
del freqs
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
del args
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class EmbedND(nn.Module):
def __init__(self, dim, theta, axes_dim):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids):
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
del ids, n_axes
return emb.unsqueeze(1)
class MLPEmbedder(nn.Module):
def __init__(self, in_dim, hidden_dim):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x):
x = self.silu(self.in_layer(x))
return self.out_layer(x)
if hasattr(torch, 'rms_norm'):
functional_rms_norm = torch.rms_norm
else:
def functional_rms_norm(x, normalized_shape, weight, eps):
if x.dtype in [torch.bfloat16, torch.float32]:
n = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + eps) * weight
else:
n = torch.rsqrt(torch.mean(x.float() ** 2, dim=-1, keepdim=True) + eps).to(x.dtype) * weight
return x * n
class RMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.weight = None # to trigger module_profile
self.scale = nn.Parameter(torch.ones(dim))
self.eps = 1e-6
self.normalized_shape = [dim]
def forward(self, x):
if self.scale.dtype != x.dtype:
self.scale = tensor2parameter(self.scale.to(dtype=x.dtype))
return functional_rms_norm(x, self.normalized_shape, self.scale, self.eps)
class QKNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q, k, v):
del v
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(k), k.to(q)
class SelfAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x, pe):
qkv = self.qkv(x)
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
B, L, _ = qkv.shape
qkv = qkv.view(B, L, 3, self.num_heads, -1)
q, k, v = qkv.permute(2, 0, 3, 1, 4)
del qkv
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
del q, k, v
x = self.proj(x)
return x
class Modulation(nn.Module):
def __init__(self, dim, double):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec):
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return out
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size, num_heads, mlp_ratio, qkv_bias=False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(self, img, txt, vec, pe):
img_mod1_shift, img_mod1_scale, img_mod1_gate, img_mod2_shift, img_mod2_scale, img_mod2_gate = self.img_mod(vec)
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1_scale) * img_modulated + img_mod1_shift
del img_mod1_shift, img_mod1_scale
img_qkv = self.img_attn.qkv(img_modulated)
del img_modulated
# img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
B, L, _ = img_qkv.shape
H = self.num_heads
D = img_qkv.shape[-1] // (3 * H)
img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
del img_qkv
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
txt_mod1_shift, txt_mod1_scale, txt_mod1_gate, txt_mod2_shift, txt_mod2_scale, txt_mod2_gate = self.txt_mod(vec)
del vec
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1_scale) * txt_modulated + txt_mod1_shift
del txt_mod1_shift, txt_mod1_scale
txt_qkv = self.txt_attn.qkv(txt_modulated)
del txt_modulated
# txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
B, L, _ = txt_qkv.shape
txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
del txt_qkv
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
attn = attention(q, k, v, pe=pe)
del pe, q, k, v
txt_attn, img_attn = attn[:, :txt.shape[1]], attn[:, txt.shape[1]:]
del attn
img = img + img_mod1_gate * self.img_attn.proj(img_attn)
del img_attn, img_mod1_gate
img = img + img_mod2_gate * self.img_mlp((1 + img_mod2_scale) * self.img_norm2(img) + img_mod2_shift)
del img_mod2_gate, img_mod2_scale, img_mod2_shift
txt = txt + txt_mod1_gate * self.txt_attn.proj(txt_attn)
del txt_attn, txt_mod1_gate
txt = txt + txt_mod2_gate * self.txt_mlp((1 + txt_mod2_scale) * self.txt_norm2(txt) + txt_mod2_shift)
del txt_mod2_gate, txt_mod2_scale, txt_mod2_shift
txt = fp16_fix(txt)
return img, txt
class SingleStreamBlock(nn.Module):
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, qk_scale=None):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x, vec, pe):
mod_shift, mod_scale, mod_gate = self.modulation(vec)
del vec
x_mod = (1 + mod_scale) * self.pre_norm(x) + mod_shift
del mod_shift, mod_scale
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
del x_mod
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
q, k, v = qkv.permute(2, 0, 3, 1, 4)
del qkv
q, k = self.norm(q, k, v)
attn = attention(q, k, v, pe=pe)
del q, k, v, pe
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), dim=2))
del attn, mlp
x = x + mod_gate * output
del mod_gate, output
x = fp16_fix(x)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x, vec):
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
del vec
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
del scale, shift
x = self.linear(x)
return x
class IntegratedFluxTransformer2DModel(nn.Module):
def __init__(self, in_channels: int, vec_in_dim: int, context_in_dim: int, hidden_size: int, mlp_ratio: float, num_heads: int, depth: int, depth_single_blocks: int, axes_dim: list[int], theta: int, qkv_bias: bool, guidance_embed: bool):
super().__init__()
self.guidance_embed = guidance_embed
self.in_channels = in_channels * 4
self.out_channels = self.in_channels
if hidden_size % num_heads != 0:
raise ValueError(f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}")
pe_dim = hidden_size // num_heads
if sum(axes_dim) != pe_dim:
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = hidden_size
self.num_heads = num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim=axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size)
self.guidance_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if guidance_embed else nn.Identity()
self.txt_in = nn.Linear(context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
)
for _ in range(depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio)
for _ in range(depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def inner_forward(self, img, img_ids, txt, txt_ids, timesteps, y, guidance=None):
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
if self.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
del y, guidance
ids = torch.cat((txt_ids, img_ids), dim=1)
del txt_ids, img_ids
pe = self.pe_embedder(ids)
del ids
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe)
del pe
img = img[:, txt.shape[1]:, ...]
del txt
img = self.final_layer(img, vec)
del vec
return img
def forward(self, x, timestep, context, y, guidance=None, **kwargs):
bs, c, h, w = x.shape
input_device = x.device
input_dtype = x.dtype
patch_size = 2
pad_h = (patch_size - x.shape[-2] % patch_size) % patch_size
pad_w = (patch_size - x.shape[-1] % patch_size) % patch_size
x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode="circular")
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
del x, pad_h, pad_w
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=input_device, dtype=input_dtype)
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=input_device, dtype=input_dtype)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=input_device, dtype=input_dtype)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=input_device, dtype=input_dtype)
del input_device, input_dtype
out = self.inner_forward(img, img_ids, context, txt_ids, timestep, y, guidance)
del img, img_ids, txt_ids, timestep, context
out = rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:, :, :h, :w]
del h_len, w_len, bs
return out