Spaces:
Runtime error
Runtime error
import os | |
from typing import Dict, Optional, Tuple, List, Union | |
import cv2 | |
import torch | |
import modules.scripts as scripts | |
from modules import shared, script_callbacks, masking, images | |
from modules.ui_components import InputAccordion | |
from modules.api.api import decode_base64_to_image | |
import gradio as gr | |
from lib_controlnet import global_state, external_code | |
from lib_controlnet.external_code import ControlNetUnit | |
from lib_controlnet.utils import align_dim_latent, set_numpy_seed, crop_and_resize_image, \ | |
prepare_mask, judge_image_type | |
from lib_controlnet.controlnet_ui.controlnet_ui_group import ControlNetUiGroup | |
from lib_controlnet.controlnet_ui.photopea import Photopea | |
from lib_controlnet.logging import logger | |
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img, \ | |
StableDiffusionProcessing | |
from lib_controlnet.infotext import Infotext | |
from modules_forge.utils import HWC3, numpy_to_pytorch | |
from lib_controlnet.enums import HiResFixOption | |
from lib_controlnet.api import controlnet_api | |
import numpy as np | |
import functools | |
from PIL import Image | |
from modules_forge.shared import try_load_supported_control_model | |
from modules_forge.supported_controlnet import ControlModelPatcher | |
# Gradio 3.32 bug fix | |
import tempfile | |
gradio_tempfile_path = os.path.join(tempfile.gettempdir(), 'gradio') | |
os.makedirs(gradio_tempfile_path, exist_ok=True) | |
global_state.update_controlnet_filenames() | |
def cached_controlnet_loader(filename): | |
return try_load_supported_control_model(filename) | |
class ControlNetCachedParameters: | |
def __init__(self): | |
self.preprocessor = None | |
self.model = None | |
self.control_cond = None | |
self.control_cond_for_hr_fix = None | |
self.control_mask = None | |
self.control_mask_for_hr_fix = None | |
class ControlNetForForgeOfficial(scripts.Script): | |
sorting_priority = 10 | |
def title(self): | |
return "ControlNet" | |
def show(self, is_img2img): | |
return scripts.AlwaysVisible | |
def ui(self, is_img2img): | |
infotext = Infotext() | |
ui_groups = [] | |
controls = [] | |
max_models = shared.opts.data.get("control_net_unit_count", 3) | |
gen_type = "img2img" if is_img2img else "txt2img" | |
elem_id_tabname = gen_type + "_controlnet" | |
default_unit = ControlNetUnit(enabled=False, module="None", model="None") | |
with gr.Group(elem_id=elem_id_tabname): | |
with gr.Accordion(f"ControlNet Integrated", open=False, elem_id="controlnet", | |
elem_classes=["controlnet"]): | |
photopea = ( | |
Photopea() | |
if not shared.opts.data.get("controlnet_disable_photopea_edit", False) | |
else None | |
) | |
with gr.Row(elem_id=elem_id_tabname + "_accordions", elem_classes="accordions"): | |
for i in range(max_models): | |
with InputAccordion( | |
value=False, | |
label=f"ControlNet Unit {i}", | |
elem_classes=["cnet-unit-enabled-accordion"], # Class on accordion | |
): | |
group = ControlNetUiGroup(is_img2img, default_unit, photopea) | |
ui_groups.append(group) | |
controls.append(group.render(f"ControlNet-{i}", elem_id_tabname)) | |
for i, ui_group in enumerate(ui_groups): | |
infotext.register_unit(i, ui_group) | |
if shared.opts.data.get("control_net_sync_field_args", True): | |
self.infotext_fields = infotext.infotext_fields | |
self.paste_field_names = infotext.paste_field_names | |
return tuple(controls) | |
def get_enabled_units(self, units): | |
# Parse dict from API calls. | |
units = [ | |
ControlNetUnit.from_dict(unit) if isinstance(unit, dict) else unit | |
for unit in units | |
] | |
assert all(isinstance(unit, ControlNetUnit) for unit in units) | |
enabled_units = [x for x in units if x.enabled] | |
return enabled_units | |
def try_crop_image_with_a1111_mask( | |
p: StableDiffusionProcessing, | |
unit: ControlNetUnit, | |
input_image: np.ndarray, | |
resize_mode: external_code.ResizeMode, | |
preprocessor | |
) -> np.ndarray: | |
a1111_mask_image: Optional[Image.Image] = getattr(p, "image_mask", None) | |
is_only_masked_inpaint = ( | |
issubclass(type(p), StableDiffusionProcessingImg2Img) and | |
p.inpaint_full_res and | |
a1111_mask_image is not None | |
) | |
if ( | |
preprocessor.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab | |
and is_only_masked_inpaint | |
): | |
logger.info("Crop input image based on A1111 mask.") | |
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])] | |
input_image = [Image.fromarray(x) for x in input_image] | |
mask = prepare_mask(a1111_mask_image, p) | |
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding) | |
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height) | |
input_image = [ | |
images.resize_image(resize_mode.int_value(), i, mask.width, mask.height) | |
for i in input_image | |
] | |
input_image = [x.crop(crop_region) for x in input_image] | |
input_image = [ | |
images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height) | |
for x in input_image | |
] | |
input_image = [np.asarray(x)[:, :, 0] for x in input_image] | |
input_image = np.stack(input_image, axis=2) | |
return input_image | |
def get_input_data(self, p, unit, preprocessor, h, w): | |
logger.info(f'ControlNet Input Mode: {unit.input_mode}') | |
image_list = [] | |
resize_mode = external_code.resize_mode_from_value(unit.resize_mode) | |
if unit.input_mode == external_code.InputMode.MERGE: | |
for idx, item in enumerate(unit.batch_input_gallery): | |
img_path = item[0] | |
logger.info(f'Try to read image: {img_path}') | |
img = np.ascontiguousarray(cv2.imread(img_path)[:, :, ::-1]).copy() | |
mask = None | |
if unit.batch_mask_gallery is not None and len(unit.batch_mask_gallery) > 0: | |
if len(unit.batch_mask_gallery) >= len(unit.batch_input_gallery): | |
mask_path = unit.batch_mask_gallery[idx]['name'] | |
else: | |
mask_path = unit.batch_mask_gallery[0]['name'] | |
mask = np.ascontiguousarray(cv2.imread(mask_path)[:, :, ::-1]).copy() | |
if img is not None: | |
image_list.append([img, mask]) | |
elif unit.input_mode == external_code.InputMode.BATCH: | |
image_list = [] | |
image_extensions = ['.jpg', '.jpeg', '.png', '.bmp'] | |
batch_image_files = shared.listfiles(unit.batch_image_dir) | |
for batch_modifier in getattr(unit, 'batch_modifiers', []): | |
batch_image_files = batch_modifier(batch_image_files, p) | |
for idx, filename in enumerate(batch_image_files): | |
if any(filename.lower().endswith(ext) for ext in image_extensions): | |
img_path = os.path.join(unit.batch_image_dir, filename) | |
logger.info(f'Try to read image: {img_path}') | |
img = np.ascontiguousarray(cv2.imread(img_path)[:, :, ::-1]).copy() | |
mask = None | |
if unit.batch_mask_dir: | |
batch_mask_files = shared.listfiles(unit.batch_mask_dir) | |
if len(batch_mask_files) >= len(batch_image_files): | |
mask_path = batch_mask_files[idx] | |
else: | |
mask_path = batch_mask_files[0] | |
mask_path = os.path.join(unit.batch_mask_dir, mask_path) | |
mask = np.ascontiguousarray(cv2.imread(mask_path)[:, :, ::-1]).copy() | |
if img is not None: | |
image_list.append([img, mask]) | |
else: | |
a1111_i2i_image = getattr(p, "init_images", [None])[0] | |
a1111_i2i_mask = getattr(p, "image_mask", None) | |
using_a1111_data = False | |
unit_image = unit.image | |
unit_image_fg = unit.image_fg[:, :, 3] if unit.image_fg is not None else None | |
if unit.use_preview_as_input and unit.generated_image is not None: | |
image = unit.generated_image | |
elif unit.image is None: | |
resize_mode = external_code.resize_mode_from_value(p.resize_mode) | |
image = HWC3(np.asarray(a1111_i2i_image)) | |
using_a1111_data = True | |
elif (unit_image < 5).all() and (unit_image_fg > 5).any(): | |
image = unit_image_fg | |
else: | |
image = unit_image | |
if not isinstance(image, np.ndarray): | |
raise ValueError("controlnet is enabled but no input image is given") | |
image = HWC3(image) | |
unit_mask_image = unit.mask_image | |
unit_mask_image_fg = unit.mask_image_fg[:, :, 3] if unit.mask_image_fg is not None else None | |
if using_a1111_data: | |
mask = HWC3(np.asarray(a1111_i2i_mask)) if a1111_i2i_mask is not None else None | |
elif unit_mask_image_fg is not None and (unit_mask_image_fg > 5).any(): | |
mask = unit_mask_image_fg | |
elif unit_mask_image is not None and (unit_mask_image > 5).any(): | |
mask = unit_mask_image | |
elif unit_image_fg is not None and (unit_image_fg > 5).any(): | |
mask = unit_image_fg | |
else: | |
mask = None | |
image = self.try_crop_image_with_a1111_mask(p, unit, image, resize_mode, preprocessor) | |
if mask is not None: | |
mask = cv2.resize(HWC3(mask), (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST) | |
mask = self.try_crop_image_with_a1111_mask(p, unit, mask, resize_mode, preprocessor) | |
image_list = [[image, mask]] | |
if resize_mode == external_code.ResizeMode.OUTER_FIT and preprocessor.expand_mask_when_resize_and_fill: | |
new_image_list = [] | |
for input_image, input_mask in image_list: | |
if input_mask is None: | |
input_mask = np.zeros_like(input_image) | |
input_mask = crop_and_resize_image( | |
input_mask, | |
external_code.ResizeMode.OUTER_FIT, h, w, | |
fill_border_with_255=True, | |
) | |
input_image = crop_and_resize_image( | |
input_image, | |
external_code.ResizeMode.OUTER_FIT, h, w, | |
fill_border_with_255=False, | |
) | |
new_image_list.append((input_image, input_mask)) | |
image_list = new_image_list | |
return image_list, resize_mode | |
def get_target_dimensions(p: StableDiffusionProcessing) -> Tuple[int, int, int, int]: | |
"""Returns (h, w, hr_h, hr_w).""" | |
h = align_dim_latent(p.height) | |
w = align_dim_latent(p.width) | |
high_res_fix = ( | |
isinstance(p, StableDiffusionProcessingTxt2Img) | |
and getattr(p, 'enable_hr', False) | |
) | |
if high_res_fix: | |
if p.hr_resize_x == 0 and p.hr_resize_y == 0: | |
hr_y = int(p.height * p.hr_scale) | |
hr_x = int(p.width * p.hr_scale) | |
else: | |
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x | |
hr_y = align_dim_latent(hr_y) | |
hr_x = align_dim_latent(hr_x) | |
else: | |
hr_y = h | |
hr_x = w | |
return h, w, hr_y, hr_x | |
def process_unit_after_click_generate(self, | |
p: StableDiffusionProcessing, | |
unit: ControlNetUnit, | |
params: ControlNetCachedParameters, | |
*args, **kwargs): | |
h, w, hr_y, hr_x = self.get_target_dimensions(p) | |
has_high_res_fix = ( | |
isinstance(p, StableDiffusionProcessingTxt2Img) | |
and getattr(p, 'enable_hr', False) | |
) | |
if unit.use_preview_as_input: | |
unit.module = 'None' | |
preprocessor = global_state.get_preprocessor(unit.module) | |
input_list, resize_mode = self.get_input_data(p, unit, preprocessor, h, w) | |
preprocessor_outputs = [] | |
control_masks = [] | |
preprocessor_output_is_image = False | |
preprocessor_output = None | |
def optional_tqdm(iterable, use_tqdm): | |
from tqdm import tqdm | |
return tqdm(iterable) if use_tqdm else iterable | |
for input_image, input_mask in optional_tqdm(input_list, len(input_list) > 1): | |
if unit.pixel_perfect: | |
unit.processor_res = external_code.pixel_perfect_resolution( | |
input_image, | |
target_H=h, | |
target_W=w, | |
resize_mode=resize_mode, | |
) | |
seed = set_numpy_seed(p) | |
logger.debug(f"Use numpy seed {seed}.") | |
logger.info(f"Using preprocessor: {unit.module}") | |
logger.info(f'preprocessor resolution = {unit.processor_res}') | |
preprocessor_output = preprocessor( | |
input_image=input_image, | |
input_mask=input_mask, | |
resolution=unit.processor_res, | |
slider_1=unit.threshold_a, | |
slider_2=unit.threshold_b, | |
) | |
preprocessor_outputs.append(preprocessor_output) | |
preprocessor_output_is_image = judge_image_type(preprocessor_output) | |
if input_mask is not None: | |
control_masks.append(input_mask) | |
if len(input_list) > 1 and not preprocessor_output_is_image: | |
logger.info('Batch wise input only support controlnet, control-lora, and t2i adapters!') | |
break | |
if has_high_res_fix: | |
hr_option = HiResFixOption.from_value(unit.hr_option) | |
else: | |
hr_option = HiResFixOption.BOTH | |
alignment_indices = [i % len(preprocessor_outputs) for i in range(p.batch_size)] | |
def attach_extra_result_image(img: np.ndarray, is_high_res: bool = False): | |
if ( | |
(is_high_res and hr_option.high_res_enabled) or | |
(not is_high_res and hr_option.low_res_enabled) | |
) and unit.save_detected_map: | |
p.extra_result_images.append(img) | |
if preprocessor_output_is_image: | |
params.control_cond = [] | |
params.control_cond_for_hr_fix = [] | |
for preprocessor_output in preprocessor_outputs: | |
control_cond = crop_and_resize_image(preprocessor_output, resize_mode, h, w) | |
attach_extra_result_image(external_code.visualize_inpaint_mask(control_cond)) | |
params.control_cond.append(numpy_to_pytorch(control_cond).movedim(-1, 1)) | |
params.control_cond = torch.cat(params.control_cond, dim=0)[alignment_indices].contiguous() | |
if has_high_res_fix: | |
for preprocessor_output in preprocessor_outputs: | |
control_cond_for_hr_fix = crop_and_resize_image(preprocessor_output, resize_mode, hr_y, hr_x) | |
attach_extra_result_image(external_code.visualize_inpaint_mask(control_cond_for_hr_fix), is_high_res=True) | |
params.control_cond_for_hr_fix.append(numpy_to_pytorch(control_cond_for_hr_fix).movedim(-1, 1)) | |
params.control_cond_for_hr_fix = torch.cat(params.control_cond_for_hr_fix, dim=0)[alignment_indices].contiguous() | |
else: | |
params.control_cond_for_hr_fix = params.control_cond | |
else: | |
params.control_cond = preprocessor_output | |
params.control_cond_for_hr_fix = preprocessor_output | |
attach_extra_result_image(input_image) | |
if len(control_masks) > 0: | |
params.control_mask = [] | |
params.control_mask_for_hr_fix = [] | |
for input_mask in control_masks: | |
fill_border = preprocessor.fill_mask_with_one_when_resize_and_fill | |
control_mask = crop_and_resize_image(input_mask, resize_mode, h, w, fill_border) | |
attach_extra_result_image(control_mask) | |
control_mask = numpy_to_pytorch(control_mask).movedim(-1, 1)[:, :1] | |
params.control_mask.append(control_mask) | |
if has_high_res_fix: | |
control_mask_for_hr_fix = crop_and_resize_image(input_mask, resize_mode, hr_y, hr_x, fill_border) | |
attach_extra_result_image(control_mask_for_hr_fix, is_high_res=True) | |
control_mask_for_hr_fix = numpy_to_pytorch(control_mask_for_hr_fix).movedim(-1, 1)[:, :1] | |
params.control_mask_for_hr_fix.append(control_mask_for_hr_fix) | |
params.control_mask = torch.cat(params.control_mask, dim=0)[alignment_indices].contiguous() | |
if has_high_res_fix: | |
params.control_mask_for_hr_fix = torch.cat(params.control_mask_for_hr_fix, dim=0)[alignment_indices].contiguous() | |
else: | |
params.control_mask_for_hr_fix = params.control_mask | |
if preprocessor.do_not_need_model: | |
model_filename = 'Not Needed' | |
params.model = ControlModelPatcher() | |
else: | |
assert unit.model != 'None', 'You have not selected any control model!' | |
model_filename = global_state.get_controlnet_filename(unit.model) | |
params.model = cached_controlnet_loader(model_filename) | |
assert params.model is not None, logger.error(f"Recognizing Control Model failed: {model_filename}") | |
params.preprocessor = preprocessor | |
params.preprocessor.process_after_running_preprocessors(process=p, params=params, **kwargs) | |
params.model.process_after_running_preprocessors(process=p, params=params, **kwargs) | |
logger.info(f"Current ControlNet {type(params.model).__name__}: {model_filename}") | |
return | |
def process_unit_before_every_sampling(self, | |
p: StableDiffusionProcessing, | |
unit: ControlNetUnit, | |
params: ControlNetCachedParameters, | |
*args, **kwargs): | |
is_hr_pass = getattr(p, 'is_hr_pass', False) | |
has_high_res_fix = ( | |
isinstance(p, StableDiffusionProcessingTxt2Img) | |
and getattr(p, 'enable_hr', False) | |
) | |
if has_high_res_fix: | |
hr_option = HiResFixOption.from_value(unit.hr_option) | |
else: | |
hr_option = HiResFixOption.BOTH | |
if has_high_res_fix and is_hr_pass and (not hr_option.high_res_enabled): | |
logger.info(f"ControlNet Skipped High-res pass.") | |
return | |
if has_high_res_fix and (not is_hr_pass) and (not hr_option.low_res_enabled): | |
logger.info(f"ControlNet Skipped Low-res pass.") | |
return | |
if is_hr_pass: | |
cond = params.control_cond_for_hr_fix | |
mask = params.control_mask_for_hr_fix | |
else: | |
cond = params.control_cond | |
mask = params.control_mask | |
kwargs.update(dict( | |
unit=unit, | |
params=params, | |
cond_original=cond.clone() if isinstance(cond, torch.Tensor) else cond, | |
mask_original=mask.clone() if isinstance(mask, torch.Tensor) else mask, | |
)) | |
params.model.strength = float(unit.weight) | |
params.model.start_percent = float(unit.guidance_start) | |
params.model.end_percent = float(unit.guidance_end) | |
params.model.positive_advanced_weighting = None | |
params.model.negative_advanced_weighting = None | |
params.model.advanced_frame_weighting = None | |
params.model.advanced_sigma_weighting = None | |
soft_weighting = { | |
'input': [0.09941396206337118, 0.12050177219802567, 0.14606275417942507, 0.17704576264172736, | |
0.214600924414215, | |
0.26012233262329093, 0.3152997971191405, 0.3821815722656249, 0.4632503906249999, 0.561515625, | |
0.6806249999999999, 0.825], | |
'middle': [0.561515625] if p.sd_model.is_sdxl else [1.0], | |
'output': [0.09941396206337118, 0.12050177219802567, 0.14606275417942507, 0.17704576264172736, | |
0.214600924414215, | |
0.26012233262329093, 0.3152997971191405, 0.3821815722656249, 0.4632503906249999, 0.561515625, | |
0.6806249999999999, 0.825] | |
} | |
zero_weighting = { | |
'input': [0.0] * 12, | |
'middle': [0.0], | |
'output': [0.0] * 12 | |
} | |
if unit.control_mode == external_code.ControlMode.CONTROL.value: | |
params.model.positive_advanced_weighting = soft_weighting.copy() | |
params.model.negative_advanced_weighting = zero_weighting.copy() | |
if unit.control_mode == external_code.ControlMode.PROMPT.value: | |
params.model.positive_advanced_weighting = soft_weighting.copy() | |
params.model.negative_advanced_weighting = soft_weighting.copy() | |
if is_hr_pass and params.preprocessor.use_soft_projection_in_hr_fix: | |
params.model.positive_advanced_weighting = soft_weighting.copy() | |
params.model.negative_advanced_weighting = soft_weighting.copy() | |
cond, mask = params.preprocessor.process_before_every_sampling(p, cond, mask, *args, **kwargs) | |
params.model.advanced_mask_weighting = mask | |
params.model.process_before_every_sampling(p, cond, mask, *args, **kwargs) | |
logger.info(f"ControlNet Method {params.preprocessor.name} patched.") | |
return | |
def bound_check_params(unit: ControlNetUnit) -> None: | |
""" | |
Checks and corrects negative parameters in ControlNetUnit 'unit'. | |
Parameters 'processor_res', 'threshold_a', 'threshold_b' are reset to | |
their default values if negative. | |
Args: | |
unit (ControlNetUnit): The ControlNetUnit instance to check. | |
""" | |
preprocessor = global_state.get_preprocessor(unit.module) | |
if unit.processor_res < 0: | |
unit.processor_res = int(preprocessor.slider_resolution.gradio_update_kwargs.get('value', 512)) | |
if unit.threshold_a < 0: | |
unit.threshold_a = int(preprocessor.slider_1.gradio_update_kwargs.get('value', 1.0)) | |
if unit.threshold_b < 0: | |
unit.threshold_b = int(preprocessor.slider_2.gradio_update_kwargs.get('value', 1.0)) | |
return | |
def process_unit_after_every_sampling(self, | |
p: StableDiffusionProcessing, | |
unit: ControlNetUnit, | |
params: ControlNetCachedParameters, | |
*args, **kwargs): | |
params.preprocessor.process_after_every_sampling(p, params, *args, **kwargs) | |
params.model.process_after_every_sampling(p, params, *args, **kwargs) | |
return | |
def process(self, p, *args, **kwargs): | |
self.current_params = {} | |
enabled_units = self.get_enabled_units(args) | |
Infotext.write_infotext(enabled_units, p) | |
for i, unit in enumerate(enabled_units): | |
self.bound_check_params(unit) | |
params = ControlNetCachedParameters() | |
self.process_unit_after_click_generate(p, unit, params, *args, **kwargs) | |
self.current_params[i] = params | |
return | |
def process_before_every_sampling(self, p, *args, **kwargs): | |
for i, unit in enumerate(self.get_enabled_units(args)): | |
self.process_unit_before_every_sampling(p, unit, self.current_params[i], *args, **kwargs) | |
return | |
def postprocess_batch_list(self, p, pp, *args, **kwargs): | |
for i, unit in enumerate(self.get_enabled_units(args)): | |
self.process_unit_after_every_sampling(p, unit, self.current_params[i], pp, *args, **kwargs) | |
return | |
def postprocess(self, p, processed, *args): | |
self.current_params = {} | |
return | |
def on_ui_settings(): | |
section = ('control_net', "ControlNet") | |
shared.opts.add_option("control_net_detectedmap_dir", shared.OptionInfo( | |
"detected_maps", "Directory for detected maps auto saving", section=section)) | |
shared.opts.add_option("control_net_models_path", shared.OptionInfo( | |
"", "Extra path to scan for ControlNet models (e.g. training output directory)", section=section)) | |
shared.opts.add_option("control_net_modules_path", shared.OptionInfo( | |
"", | |
"Path to directory containing annotator model directories (requires restart, overrides corresponding command line flag)", | |
section=section)) | |
shared.opts.add_option("control_net_unit_count", shared.OptionInfo( | |
3, "Multi-ControlNet: ControlNet unit number (requires restart)", gr.Slider, | |
{"minimum": 1, "maximum": 10, "step": 1}, section=section)) | |
shared.opts.add_option("control_net_model_cache_size", shared.OptionInfo( | |
5, "Model cache size (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section)) | |
shared.opts.add_option("control_net_no_detectmap", shared.OptionInfo( | |
False, "Do not append detectmap to output", gr.Checkbox, {"interactive": True}, section=section)) | |
shared.opts.add_option("control_net_detectmap_autosaving", shared.OptionInfo( | |
False, "Allow detectmap auto saving", gr.Checkbox, {"interactive": True}, section=section)) | |
shared.opts.add_option("control_net_allow_script_control", shared.OptionInfo( | |
False, "Allow other script to control this extension", gr.Checkbox, {"interactive": True}, section=section)) | |
shared.opts.add_option("control_net_sync_field_args", shared.OptionInfo( | |
True, "Paste ControlNet parameters in infotext", gr.Checkbox, {"interactive": True}, section=section)) | |
shared.opts.add_option("controlnet_show_batch_images_in_ui", shared.OptionInfo( | |
False, "Show batch images in gradio gallery output", gr.Checkbox, {"interactive": True}, section=section)) | |
shared.opts.add_option("controlnet_increment_seed_during_batch", shared.OptionInfo( | |
False, "Increment seed after each controlnet batch iteration", gr.Checkbox, {"interactive": True}, | |
section=section)) | |
shared.opts.add_option("controlnet_disable_openpose_edit", shared.OptionInfo( | |
False, "Disable openpose edit", gr.Checkbox, {"interactive": True}, section=section)) | |
shared.opts.add_option("controlnet_disable_photopea_edit", shared.OptionInfo( | |
False, "Disable photopea edit", gr.Checkbox, {"interactive": True}, section=section)) | |
shared.opts.add_option("controlnet_photopea_warning", shared.OptionInfo( | |
True, "Photopea popup warning", gr.Checkbox, {"interactive": True}, section=section)) | |
shared.opts.add_option("controlnet_input_thumbnail", shared.OptionInfo( | |
True, "Input image thumbnail on unit header", gr.Checkbox, {"interactive": True}, section=section)) | |
script_callbacks.on_ui_settings(on_ui_settings) | |
script_callbacks.on_infotext_pasted(Infotext.on_infotext_pasted) | |
script_callbacks.on_after_component(ControlNetUiGroup.on_after_component) | |
script_callbacks.on_before_reload(ControlNetUiGroup.reset) | |
script_callbacks.on_app_started(controlnet_api) | |