NilEneb's picture
Upload folder using huggingface_hub
ad93086 verified
import torch
import packages_3rdparty.webui_lora_collection.lora as lora_utils_webui
import packages_3rdparty.comfyui_lora_collection.lora as lora_utils_comfyui
from backend import memory_management, utils
extra_weight_calculators = {}
lora_collection_priority = [lora_utils_webui, lora_utils_comfyui]
def get_function(function_name: str):
for lora_collection in lora_collection_priority:
if hasattr(lora_collection, function_name):
return getattr(lora_collection, function_name)
def load_lora(lora, to_load):
patch_dict, remaining_dict = get_function('load_lora')(lora, to_load)
return patch_dict, remaining_dict
def inner_str(k, prefix="", suffix=""):
return k[len(prefix):-len(suffix)]
def model_lora_keys_clip(model, key_map={}):
model_keys, key_maps = get_function('model_lora_keys_clip')(model, key_map)
for model_key in model_keys:
if model_key.endswith(".weight"):
if model_key.startswith("t5xxl.transformer."):
for prefix in ['te1', 'te2', 'te3']:
formatted = inner_str(model_key, "t5xxl.transformer.", ".weight")
formatted = formatted.replace(".", "_")
formatted = f"lora_{prefix}_{formatted}"
key_map[formatted] = model_key
return key_maps
def model_lora_keys_unet(model, key_map={}):
model_keys, key_maps = get_function('model_lora_keys_unet')(model, key_map)
# TODO: OFT
return key_maps
@torch.inference_mode()
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype):
# Modified from https://github.com/comfyanonymous/ComfyUI/blob/39f114c44bb99d4a221e8da451d4f2a20119c674/comfy/model_patcher.py#L33
dora_scale = memory_management.cast_to_device(dora_scale, weight.device, computation_dtype)
lora_diff *= alpha
weight_calc = weight + lora_diff.type(weight.dtype)
weight_norm = (
weight_calc.transpose(0, 1)
.reshape(weight_calc.shape[1], -1)
.norm(dim=1, keepdim=True)
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
.transpose(0, 1)
)
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
if strength != 1.0:
weight_calc -= weight
weight += strength * weight_calc
else:
weight[:] = weight_calc
return weight
@torch.inference_mode()
def merge_lora_to_weight(patches, weight, key="online_lora", computation_dtype=torch.float32):
# Modified from https://github.com/comfyanonymous/ComfyUI/blob/39f114c44bb99d4a221e8da451d4f2a20119c674/comfy/model_patcher.py#L446
weight_dtype_backup = None
if computation_dtype == weight.dtype:
weight = weight.clone()
else:
weight_dtype_backup = weight.dtype
weight = weight.to(dtype=computation_dtype)
for p in patches:
strength = p[0]
v = p[1]
strength_model = p[2]
offset = p[3]
function = p[4]
if function is None:
function = lambda a: a
old_weight = None
if offset is not None:
old_weight = weight
weight = weight.narrow(offset[0], offset[1], offset[2])
if strength_model != 1.0:
weight *= strength_model
if isinstance(v, list):
v = (merge_lora_to_weight(v[1:], v[0].clone(), key),)
patch_type = ''
if len(v) == 1:
patch_type = "diff"
elif len(v) == 2:
patch_type = v[0]
v = v[1]
if patch_type == "diff":
w1 = v[0]
if strength != 0.0:
if w1.shape != weight.shape:
if w1.ndim == weight.ndim == 4:
new_shape = [max(n, m) for n, m in zip(weight.shape, w1.shape)]
print(f'Merged with {key} channel changed to {new_shape}')
new_diff = strength * memory_management.cast_to_device(w1, weight.device, weight.dtype)
new_weight = torch.zeros(size=new_shape).to(weight)
new_weight[:weight.shape[0], :weight.shape[1], :weight.shape[2], :weight.shape[3]] = weight
new_weight[:new_diff.shape[0], :new_diff.shape[1], :new_diff.shape[2], :new_diff.shape[3]] += new_diff
new_weight = new_weight.contiguous().clone()
weight = new_weight
else:
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
else:
weight += strength * memory_management.cast_to_device(w1, weight.device, weight.dtype)
elif patch_type == "lora":
mat1 = memory_management.cast_to_device(v[0], weight.device, computation_dtype)
mat2 = memory_management.cast_to_device(v[1], weight.device, computation_dtype)
dora_scale = v[4]
if v[2] is not None:
alpha = v[2] / mat2.shape[0]
else:
alpha = 1.0
if v[3] is not None:
mat3 = memory_management.cast_to_device(v[3], weight.device, computation_dtype)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype))
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
print("ERROR {} {} {}".format(patch_type, key, e))
raise e
elif patch_type == "lokr":
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dora_scale = v[8]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(memory_management.cast_to_device(w1_a, weight.device, computation_dtype),
memory_management.cast_to_device(w1_b, weight.device, computation_dtype))
else:
w1 = memory_management.cast_to_device(w1, weight.device, computation_dtype)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(memory_management.cast_to_device(w2_a, weight.device, computation_dtype),
memory_management.cast_to_device(w2_b, weight.device, computation_dtype))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
memory_management.cast_to_device(t2, weight.device, computation_dtype),
memory_management.cast_to_device(w2_b, weight.device, computation_dtype),
memory_management.cast_to_device(w2_a, weight.device, computation_dtype))
else:
w2 = memory_management.cast_to_device(w2, weight.device, computation_dtype)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha = v[2] / dim
else:
alpha = 1.0
try:
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype))
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
print("ERROR {} {} {}".format(patch_type, key, e))
raise e
elif patch_type == "loha":
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha = v[2] / w1b.shape[0]
else:
alpha = 1.0
w2a = v[3]
w2b = v[4]
dora_scale = v[7]
if v[5] is not None:
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
memory_management.cast_to_device(t1, weight.device, computation_dtype),
memory_management.cast_to_device(w1b, weight.device, computation_dtype),
memory_management.cast_to_device(w1a, weight.device, computation_dtype))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
memory_management.cast_to_device(t2, weight.device, computation_dtype),
memory_management.cast_to_device(w2b, weight.device, computation_dtype),
memory_management.cast_to_device(w2a, weight.device, computation_dtype))
else:
m1 = torch.mm(memory_management.cast_to_device(w1a, weight.device, computation_dtype),
memory_management.cast_to_device(w1b, weight.device, computation_dtype))
m2 = torch.mm(memory_management.cast_to_device(w2a, weight.device, computation_dtype),
memory_management.cast_to_device(w2b, weight.device, computation_dtype))
try:
lora_diff = (m1 * m2).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype))
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
print("ERROR {} {} {}".format(patch_type, key, e))
raise e
elif patch_type == "glora":
if v[4] is not None:
alpha = v[4] / v[0].shape[0]
else:
alpha = 1.0
dora_scale = v[5]
a1 = memory_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, computation_dtype)
a2 = memory_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, computation_dtype)
b1 = memory_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, computation_dtype)
b2 = memory_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, computation_dtype)
try:
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape)
if dora_scale is not None:
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype))
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
print("ERROR {} {} {}".format(patch_type, key, e))
raise e
elif patch_type in extra_weight_calculators:
weight = extra_weight_calculators[patch_type](weight, strength, v)
else:
print("patch type not recognized {} {}".format(patch_type, key))
if old_weight is not None:
weight = old_weight
if weight_dtype_backup is not None:
weight = weight.to(dtype=weight_dtype_backup)
return weight
def get_parameter_devices(model):
parameter_devices = {}
for key, p in model.named_parameters():
parameter_devices[key] = p.device
return parameter_devices
def set_parameter_devices(model, parameter_devices):
for key, device in parameter_devices.items():
p = utils.get_attr(model, key)
if p.device != device:
p = utils.tensor2parameter(p.to(device=device))
utils.set_attr_raw(model, key, p)
return model
from backend import operations
class LoraLoader:
def __init__(self, model):
self.model = model
self.backup = {}
self.online_backup = []
self.loaded_hash = str([])
@torch.inference_mode()
def refresh(self, lora_patches, offload_device=torch.device('cpu')):
hashes = str(list(lora_patches.keys()))
if hashes == self.loaded_hash:
return
# Merge Patches
all_patches = {}
for (_, _, _, online_mode), patches in lora_patches.items():
for key, current_patches in patches.items():
all_patches[(key, online_mode)] = all_patches.get((key, online_mode), []) + current_patches
# Initialize
memory_management.signal_empty_cache = True
parameter_devices = get_parameter_devices(self.model)
# Restore
for m in set(self.online_backup):
del m.forge_online_loras
self.online_backup = []
for k, w in self.backup.items():
if not isinstance(w, torch.nn.Parameter):
# In very few cases
w = torch.nn.Parameter(w, requires_grad=False)
utils.set_attr_raw(self.model, k, w)
self.backup = {}
set_parameter_devices(self.model, parameter_devices=parameter_devices)
# Patch
for (key, online_mode), current_patches in all_patches.items():
try:
parent_layer, child_key, weight = utils.get_attr_with_parent(self.model, key)
assert isinstance(weight, torch.nn.Parameter)
except:
raise ValueError(f"Wrong LoRA Key: {key}")
if online_mode:
if not hasattr(parent_layer, 'forge_online_loras'):
parent_layer.forge_online_loras = {}
parent_layer.forge_online_loras[child_key] = current_patches
self.online_backup.append(parent_layer)
continue
if key not in self.backup:
self.backup[key] = weight.to(device=offload_device)
bnb_layer = None
if hasattr(weight, 'bnb_quantized') and operations.bnb_avaliable:
bnb_layer = parent_layer
from backend.operations_bnb import functional_dequantize_4bit
weight = functional_dequantize_4bit(weight)
gguf_cls = getattr(weight, 'gguf_cls', None)
gguf_parameter = None
if gguf_cls is not None:
gguf_parameter = weight
from backend.operations_gguf import dequantize_tensor
weight = dequantize_tensor(weight)
try:
weight = merge_lora_to_weight(current_patches, weight, key, computation_dtype=torch.float32)
except:
print('Patching LoRA weights out of memory. Retrying by offloading models.')
set_parameter_devices(self.model, parameter_devices={k: offload_device for k in parameter_devices.keys()})
memory_management.soft_empty_cache()
weight = merge_lora_to_weight(current_patches, weight, key, computation_dtype=torch.float32)
if bnb_layer is not None:
bnb_layer.reload_weight(weight)
continue
if gguf_cls is not None:
gguf_cls.quantize_pytorch(weight, gguf_parameter)
continue
utils.set_attr_raw(self.model, key, torch.nn.Parameter(weight, requires_grad=False))
# End
set_parameter_devices(self.model, parameter_devices=parameter_devices)
self.loaded_hash = hashes
return