Spaces:
Runtime error
Runtime error
import torch | |
import packages_3rdparty.webui_lora_collection.lora as lora_utils_webui | |
import packages_3rdparty.comfyui_lora_collection.lora as lora_utils_comfyui | |
from backend import memory_management, utils | |
extra_weight_calculators = {} | |
lora_collection_priority = [lora_utils_webui, lora_utils_comfyui] | |
def get_function(function_name: str): | |
for lora_collection in lora_collection_priority: | |
if hasattr(lora_collection, function_name): | |
return getattr(lora_collection, function_name) | |
def load_lora(lora, to_load): | |
patch_dict, remaining_dict = get_function('load_lora')(lora, to_load) | |
return patch_dict, remaining_dict | |
def inner_str(k, prefix="", suffix=""): | |
return k[len(prefix):-len(suffix)] | |
def model_lora_keys_clip(model, key_map={}): | |
model_keys, key_maps = get_function('model_lora_keys_clip')(model, key_map) | |
for model_key in model_keys: | |
if model_key.endswith(".weight"): | |
if model_key.startswith("t5xxl.transformer."): | |
for prefix in ['te1', 'te2', 'te3']: | |
formatted = inner_str(model_key, "t5xxl.transformer.", ".weight") | |
formatted = formatted.replace(".", "_") | |
formatted = f"lora_{prefix}_{formatted}" | |
key_map[formatted] = model_key | |
return key_maps | |
def model_lora_keys_unet(model, key_map={}): | |
model_keys, key_maps = get_function('model_lora_keys_unet')(model, key_map) | |
# TODO: OFT | |
return key_maps | |
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype): | |
# Modified from https://github.com/comfyanonymous/ComfyUI/blob/39f114c44bb99d4a221e8da451d4f2a20119c674/comfy/model_patcher.py#L33 | |
dora_scale = memory_management.cast_to_device(dora_scale, weight.device, computation_dtype) | |
lora_diff *= alpha | |
weight_calc = weight + lora_diff.type(weight.dtype) | |
weight_norm = ( | |
weight_calc.transpose(0, 1) | |
.reshape(weight_calc.shape[1], -1) | |
.norm(dim=1, keepdim=True) | |
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1)) | |
.transpose(0, 1) | |
) | |
weight_calc *= (dora_scale / weight_norm).type(weight.dtype) | |
if strength != 1.0: | |
weight_calc -= weight | |
weight += strength * weight_calc | |
else: | |
weight[:] = weight_calc | |
return weight | |
def merge_lora_to_weight(patches, weight, key="online_lora", computation_dtype=torch.float32): | |
# Modified from https://github.com/comfyanonymous/ComfyUI/blob/39f114c44bb99d4a221e8da451d4f2a20119c674/comfy/model_patcher.py#L446 | |
weight_dtype_backup = None | |
if computation_dtype == weight.dtype: | |
weight = weight.clone() | |
else: | |
weight_dtype_backup = weight.dtype | |
weight = weight.to(dtype=computation_dtype) | |
for p in patches: | |
strength = p[0] | |
v = p[1] | |
strength_model = p[2] | |
offset = p[3] | |
function = p[4] | |
if function is None: | |
function = lambda a: a | |
old_weight = None | |
if offset is not None: | |
old_weight = weight | |
weight = weight.narrow(offset[0], offset[1], offset[2]) | |
if strength_model != 1.0: | |
weight *= strength_model | |
if isinstance(v, list): | |
v = (merge_lora_to_weight(v[1:], v[0].clone(), key),) | |
patch_type = '' | |
if len(v) == 1: | |
patch_type = "diff" | |
elif len(v) == 2: | |
patch_type = v[0] | |
v = v[1] | |
if patch_type == "diff": | |
w1 = v[0] | |
if strength != 0.0: | |
if w1.shape != weight.shape: | |
if w1.ndim == weight.ndim == 4: | |
new_shape = [max(n, m) for n, m in zip(weight.shape, w1.shape)] | |
print(f'Merged with {key} channel changed to {new_shape}') | |
new_diff = strength * memory_management.cast_to_device(w1, weight.device, weight.dtype) | |
new_weight = torch.zeros(size=new_shape).to(weight) | |
new_weight[:weight.shape[0], :weight.shape[1], :weight.shape[2], :weight.shape[3]] = weight | |
new_weight[:new_diff.shape[0], :new_diff.shape[1], :new_diff.shape[2], :new_diff.shape[3]] += new_diff | |
new_weight = new_weight.contiguous().clone() | |
weight = new_weight | |
else: | |
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) | |
else: | |
weight += strength * memory_management.cast_to_device(w1, weight.device, weight.dtype) | |
elif patch_type == "lora": | |
mat1 = memory_management.cast_to_device(v[0], weight.device, computation_dtype) | |
mat2 = memory_management.cast_to_device(v[1], weight.device, computation_dtype) | |
dora_scale = v[4] | |
if v[2] is not None: | |
alpha = v[2] / mat2.shape[0] | |
else: | |
alpha = 1.0 | |
if v[3] is not None: | |
mat3 = memory_management.cast_to_device(v[3], weight.device, computation_dtype) | |
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] | |
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) | |
try: | |
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype)) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
print("ERROR {} {} {}".format(patch_type, key, e)) | |
raise e | |
elif patch_type == "lokr": | |
w1 = v[0] | |
w2 = v[1] | |
w1_a = v[3] | |
w1_b = v[4] | |
w2_a = v[5] | |
w2_b = v[6] | |
t2 = v[7] | |
dora_scale = v[8] | |
dim = None | |
if w1 is None: | |
dim = w1_b.shape[0] | |
w1 = torch.mm(memory_management.cast_to_device(w1_a, weight.device, computation_dtype), | |
memory_management.cast_to_device(w1_b, weight.device, computation_dtype)) | |
else: | |
w1 = memory_management.cast_to_device(w1, weight.device, computation_dtype) | |
if w2 is None: | |
dim = w2_b.shape[0] | |
if t2 is None: | |
w2 = torch.mm(memory_management.cast_to_device(w2_a, weight.device, computation_dtype), | |
memory_management.cast_to_device(w2_b, weight.device, computation_dtype)) | |
else: | |
w2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
memory_management.cast_to_device(t2, weight.device, computation_dtype), | |
memory_management.cast_to_device(w2_b, weight.device, computation_dtype), | |
memory_management.cast_to_device(w2_a, weight.device, computation_dtype)) | |
else: | |
w2 = memory_management.cast_to_device(w2, weight.device, computation_dtype) | |
if len(w2.shape) == 4: | |
w1 = w1.unsqueeze(2).unsqueeze(2) | |
if v[2] is not None and dim is not None: | |
alpha = v[2] / dim | |
else: | |
alpha = 1.0 | |
try: | |
lora_diff = torch.kron(w1, w2).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype)) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
print("ERROR {} {} {}".format(patch_type, key, e)) | |
raise e | |
elif patch_type == "loha": | |
w1a = v[0] | |
w1b = v[1] | |
if v[2] is not None: | |
alpha = v[2] / w1b.shape[0] | |
else: | |
alpha = 1.0 | |
w2a = v[3] | |
w2b = v[4] | |
dora_scale = v[7] | |
if v[5] is not None: | |
t1 = v[5] | |
t2 = v[6] | |
m1 = torch.einsum('i j k l, j r, i p -> p r k l', | |
memory_management.cast_to_device(t1, weight.device, computation_dtype), | |
memory_management.cast_to_device(w1b, weight.device, computation_dtype), | |
memory_management.cast_to_device(w1a, weight.device, computation_dtype)) | |
m2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
memory_management.cast_to_device(t2, weight.device, computation_dtype), | |
memory_management.cast_to_device(w2b, weight.device, computation_dtype), | |
memory_management.cast_to_device(w2a, weight.device, computation_dtype)) | |
else: | |
m1 = torch.mm(memory_management.cast_to_device(w1a, weight.device, computation_dtype), | |
memory_management.cast_to_device(w1b, weight.device, computation_dtype)) | |
m2 = torch.mm(memory_management.cast_to_device(w2a, weight.device, computation_dtype), | |
memory_management.cast_to_device(w2b, weight.device, computation_dtype)) | |
try: | |
lora_diff = (m1 * m2).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype)) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
print("ERROR {} {} {}".format(patch_type, key, e)) | |
raise e | |
elif patch_type == "glora": | |
if v[4] is not None: | |
alpha = v[4] / v[0].shape[0] | |
else: | |
alpha = 1.0 | |
dora_scale = v[5] | |
a1 = memory_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, computation_dtype) | |
a2 = memory_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, computation_dtype) | |
b1 = memory_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, computation_dtype) | |
b2 = memory_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, computation_dtype) | |
try: | |
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength, computation_dtype)) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
print("ERROR {} {} {}".format(patch_type, key, e)) | |
raise e | |
elif patch_type in extra_weight_calculators: | |
weight = extra_weight_calculators[patch_type](weight, strength, v) | |
else: | |
print("patch type not recognized {} {}".format(patch_type, key)) | |
if old_weight is not None: | |
weight = old_weight | |
if weight_dtype_backup is not None: | |
weight = weight.to(dtype=weight_dtype_backup) | |
return weight | |
def get_parameter_devices(model): | |
parameter_devices = {} | |
for key, p in model.named_parameters(): | |
parameter_devices[key] = p.device | |
return parameter_devices | |
def set_parameter_devices(model, parameter_devices): | |
for key, device in parameter_devices.items(): | |
p = utils.get_attr(model, key) | |
if p.device != device: | |
p = utils.tensor2parameter(p.to(device=device)) | |
utils.set_attr_raw(model, key, p) | |
return model | |
from backend import operations | |
class LoraLoader: | |
def __init__(self, model): | |
self.model = model | |
self.backup = {} | |
self.online_backup = [] | |
self.loaded_hash = str([]) | |
def refresh(self, lora_patches, offload_device=torch.device('cpu')): | |
hashes = str(list(lora_patches.keys())) | |
if hashes == self.loaded_hash: | |
return | |
# Merge Patches | |
all_patches = {} | |
for (_, _, _, online_mode), patches in lora_patches.items(): | |
for key, current_patches in patches.items(): | |
all_patches[(key, online_mode)] = all_patches.get((key, online_mode), []) + current_patches | |
# Initialize | |
memory_management.signal_empty_cache = True | |
parameter_devices = get_parameter_devices(self.model) | |
# Restore | |
for m in set(self.online_backup): | |
del m.forge_online_loras | |
self.online_backup = [] | |
for k, w in self.backup.items(): | |
if not isinstance(w, torch.nn.Parameter): | |
# In very few cases | |
w = torch.nn.Parameter(w, requires_grad=False) | |
utils.set_attr_raw(self.model, k, w) | |
self.backup = {} | |
set_parameter_devices(self.model, parameter_devices=parameter_devices) | |
# Patch | |
for (key, online_mode), current_patches in all_patches.items(): | |
try: | |
parent_layer, child_key, weight = utils.get_attr_with_parent(self.model, key) | |
assert isinstance(weight, torch.nn.Parameter) | |
except: | |
raise ValueError(f"Wrong LoRA Key: {key}") | |
if online_mode: | |
if not hasattr(parent_layer, 'forge_online_loras'): | |
parent_layer.forge_online_loras = {} | |
parent_layer.forge_online_loras[child_key] = current_patches | |
self.online_backup.append(parent_layer) | |
continue | |
if key not in self.backup: | |
self.backup[key] = weight.to(device=offload_device) | |
bnb_layer = None | |
if hasattr(weight, 'bnb_quantized') and operations.bnb_avaliable: | |
bnb_layer = parent_layer | |
from backend.operations_bnb import functional_dequantize_4bit | |
weight = functional_dequantize_4bit(weight) | |
gguf_cls = getattr(weight, 'gguf_cls', None) | |
gguf_parameter = None | |
if gguf_cls is not None: | |
gguf_parameter = weight | |
from backend.operations_gguf import dequantize_tensor | |
weight = dequantize_tensor(weight) | |
try: | |
weight = merge_lora_to_weight(current_patches, weight, key, computation_dtype=torch.float32) | |
except: | |
print('Patching LoRA weights out of memory. Retrying by offloading models.') | |
set_parameter_devices(self.model, parameter_devices={k: offload_device for k in parameter_devices.keys()}) | |
memory_management.soft_empty_cache() | |
weight = merge_lora_to_weight(current_patches, weight, key, computation_dtype=torch.float32) | |
if bnb_layer is not None: | |
bnb_layer.reload_weight(weight) | |
continue | |
if gguf_cls is not None: | |
gguf_cls.quantize_pytorch(weight, gguf_parameter) | |
continue | |
utils.set_attr_raw(self.model, key, torch.nn.Parameter(weight, requires_grad=False)) | |
# End | |
set_parameter_devices(self.model, parameter_devices=parameter_devices) | |
self.loaded_hash = hashes | |
return | |