NilEneb's picture
Upload folder using huggingface_hub
ad93086 verified
# Started from some codes from early ComfyUI and then 80% rewritten,
# mainly for supporting different special control methods in Forge
# Copyright Forge 2024
import torch
import math
import collections
from backend import memory_management
from backend.sampling.condition import Condition, compile_conditions, compile_weighted_conditions
from backend.operations import cleanup_cache
from backend.args import dynamic_args, args
from backend import utils
def get_area_and_mult(conds, x_in, timestep_in):
area = (x_in.shape[2], x_in.shape[3], 0, 0)
strength = 1.0
if 'timestep_start' in conds:
timestep_start = conds['timestep_start']
if timestep_in[0] > timestep_start:
return None
if 'timestep_end' in conds:
timestep_end = conds['timestep_end']
if timestep_in[0] < timestep_end:
return None
if 'area' in conds:
area = conds['area']
if 'strength' in conds:
strength = conds['strength']
input_x = x_in[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]]
if 'mask' in conds:
mask_strength = 1.0
if "mask_strength" in conds:
mask_strength = conds["mask_strength"]
mask = conds['mask']
assert (mask.shape[1] == x_in.shape[2])
assert (mask.shape[2] == x_in.shape[3])
mask = mask[:, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] * mask_strength
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
else:
mask = torch.ones_like(input_x)
mult = mask * strength
if 'mask' not in conds:
rr = 8
if area[2] != 0:
for t in range(rr):
mult[:, :, t:1 + t, :] *= ((1.0 / rr) * (t + 1))
if (area[0] + area[2]) < x_in.shape[2]:
for t in range(rr):
mult[:, :, area[0] - 1 - t:area[0] - t, :] *= ((1.0 / rr) * (t + 1))
if area[3] != 0:
for t in range(rr):
mult[:, :, :, t:1 + t] *= ((1.0 / rr) * (t + 1))
if (area[1] + area[3]) < x_in.shape[3]:
for t in range(rr):
mult[:, :, :, area[1] - 1 - t:area[1] - t] *= ((1.0 / rr) * (t + 1))
conditioning = {}
model_conds = conds["model_conds"]
for c in model_conds:
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
control = conds.get('control', None)
patches = None
cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches'])
return cond_obj(input_x, mult, conditioning, area, control, patches)
def cond_equal_size(c1, c2):
if c1 is c2:
return True
if c1.keys() != c2.keys():
return False
for k in c1:
if not c1[k].can_concat(c2[k]):
return False
return True
def can_concat_cond(c1, c2):
if c1.input_x.shape != c2.input_x.shape:
return False
def objects_concatable(obj1, obj2):
if (obj1 is None) != (obj2 is None):
return False
if obj1 is not None:
if obj1 is not obj2:
return False
return True
if not objects_concatable(c1.control, c2.control):
return False
if not objects_concatable(c1.patches, c2.patches):
return False
return cond_equal_size(c1.conditioning, c2.conditioning)
def cond_cat(c_list):
c_crossattn = []
c_concat = []
c_adm = []
crossattn_max_len = 0
temp = {}
for x in c_list:
for k in x:
cur = temp.get(k, [])
cur.append(x[k])
temp[k] = cur
out = {}
for k in temp:
conds = temp[k]
out[k] = conds[0].concat(conds[1:])
return out
def compute_cond_mark(cond_or_uncond, sigmas):
cond_or_uncond_size = int(sigmas.shape[0])
cond_mark = []
for cx in cond_or_uncond:
cond_mark += [cx] * cond_or_uncond_size
cond_mark = torch.Tensor(cond_mark).to(sigmas)
return cond_mark
def compute_cond_indices(cond_or_uncond, sigmas):
cl = int(sigmas.shape[0])
cond_indices = []
uncond_indices = []
for i, cx in enumerate(cond_or_uncond):
if cx == 0:
cond_indices += list(range(i * cl, (i + 1) * cl))
else:
uncond_indices += list(range(i * cl, (i + 1) * cl))
return cond_indices, uncond_indices
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
out_cond = torch.zeros_like(x_in)
out_count = torch.ones_like(x_in) * 1e-37
out_uncond = torch.zeros_like(x_in)
out_uncond_count = torch.ones_like(x_in) * 1e-37
COND = 0
UNCOND = 1
to_run = []
for x in cond:
p = get_area_and_mult(x, x_in, timestep)
if p is None:
continue
to_run += [(p, COND)]
if uncond is not None:
for x in uncond:
p = get_area_and_mult(x, x_in, timestep)
if p is None:
continue
to_run += [(p, UNCOND)]
while len(to_run) > 0:
first = to_run[0]
first_shape = first[0][0].shape
to_batch_temp = []
for x in range(len(to_run)):
if can_concat_cond(to_run[x][0], first[0]):
to_batch_temp += [x]
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
if memory_management.signal_empty_cache:
memory_management.soft_empty_cache()
free_memory = memory_management.get_free_memory(x_in.device)
if (not args.disable_gpu_warning) and x_in.device.type == 'cuda':
free_memory_mb = free_memory / (1024.0 * 1024.0)
safe_memory_mb = 1536.0
if free_memory_mb < safe_memory_mb:
print(f"\n\n----------------------")
print(f"[Low GPU VRAM Warning] Your current GPU free memory is {free_memory_mb:.2f} MB for this diffusion iteration.")
print(f"[Low GPU VRAM Warning] This number is lower than the safe value of {safe_memory_mb:.2f} MB.")
print(f"[Low GPU VRAM Warning] If you continue, you may cause NVIDIA GPU performance degradation for this diffusion process, and the speed may be extremely slow (about 10x slower).")
print(f"[Low GPU VRAM Warning] To solve the problem, you can set the 'GPU Weights' (on the top of page) to a lower value.")
print(f"[Low GPU VRAM Warning] If you cannot find 'GPU Weights', you can click the 'all' option in the 'UI' area on the left-top corner of the webpage.")
print(f"[Low GPU VRAM Warning] If you want to take the risk of NVIDIA GPU fallback and test the 10x slower speed, you can (but are highly not recommended to) add '--disable-gpu-warning' to CMD flags to remove this warning.")
print(f"----------------------\n\n")
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp) // i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
if model.memory_required(input_shape) < free_memory:
to_batch = batch_amount
break
input_x = []
mult = []
c = []
cond_or_uncond = []
area = []
control = None
patches = None
for x in to_batch:
o = to_run.pop(x)
p = o[0]
input_x.append(p.input_x)
mult.append(p.mult)
c.append(p.conditioning)
area.append(p.area)
cond_or_uncond.append(o[1])
control = p.control
patches = p.patches
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x)
c = cond_cat(c)
timestep_ = torch.cat([timestep] * batch_chunks)
transformer_options = {}
if 'transformer_options' in model_options:
transformer_options = model_options['transformer_options'].copy()
if patches is not None:
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
else:
transformer_options["patches"] = patches
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["sigmas"] = timestep
transformer_options["cond_mark"] = compute_cond_mark(cond_or_uncond=cond_or_uncond, sigmas=timestep)
transformer_options["cond_indices"], transformer_options["uncond_indices"] = compute_cond_indices(cond_or_uncond=cond_or_uncond, sigmas=timestep)
c['transformer_options'] = transformer_options
if control is not None:
p = control
while p is not None:
p.transformer_options = transformer_options
p = p.previous_controlnet
control_cond = c.copy() # get_control may change items in this dict, so we need to copy it
c['control'] = control.get_control(input_x, timestep_, control_cond, len(cond_or_uncond))
c['control_model'] = control
if 'model_function_wrapper' in model_options:
output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
else:
output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
del input_x
for o in range(batch_chunks):
if cond_or_uncond[o] == COND:
out_cond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
out_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o]
else:
out_uncond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
out_uncond_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o]
del mult
out_cond /= out_count
del out_count
out_uncond /= out_uncond_count
del out_uncond_count
return out_cond, out_uncond
def sampling_function_inner(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None, return_full=False):
edit_strength = sum((item['strength'] if 'strength' in item else 1) for item in cond)
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
uncond_ = None
else:
uncond_ = uncond
for fn in model_options.get("sampler_pre_cfg_function", []):
model, cond, uncond_, x, timestep, model_options = fn(model, cond, uncond_, x, timestep, model_options)
cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options)
if "sampler_cfg_function" in model_options:
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
cfg_result = x - model_options["sampler_cfg_function"](args)
elif not math.isclose(edit_strength, 1.0):
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale * edit_strength
else:
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
for fn in model_options.get("sampler_post_cfg_function", []):
args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
"sigma": timestep, "model_options": model_options, "input": x}
cfg_result = fn(args)
if return_full:
return cfg_result, cond_pred, uncond_pred
return cfg_result
def sampling_function(self, denoiser_params, cond_scale, cond_composition):
unet_patcher = self.inner_model.inner_model.forge_objects.unet
model = unet_patcher.model
control = unet_patcher.controlnet_linked_list
extra_concat_condition = unet_patcher.extra_concat_condition
x = denoiser_params.x
timestep = denoiser_params.sigma
uncond = compile_conditions(denoiser_params.text_uncond)
cond = compile_weighted_conditions(denoiser_params.text_cond, cond_composition)
model_options = unet_patcher.model_options
seed = self.p.seeds[0]
if extra_concat_condition is not None:
image_cond_in = extra_concat_condition
else:
image_cond_in = denoiser_params.image_cond
if isinstance(image_cond_in, torch.Tensor):
if image_cond_in.shape[0] == x.shape[0] \
and image_cond_in.shape[2] == x.shape[2] \
and image_cond_in.shape[3] == x.shape[3]:
if uncond is not None:
for i in range(len(uncond)):
uncond[i]['model_conds']['c_concat'] = Condition(image_cond_in)
for i in range(len(cond)):
cond[i]['model_conds']['c_concat'] = Condition(image_cond_in)
if control is not None:
for h in cond:
h['control'] = control
if uncond is not None:
for h in uncond:
h['control'] = control
for modifier in model_options.get('conditioning_modifiers', []):
model, x, timestep, uncond, cond, cond_scale, model_options, seed = modifier(model, x, timestep, uncond, cond, cond_scale, model_options, seed)
denoised, cond_pred, uncond_pred = sampling_function_inner(model, x, timestep, uncond, cond, cond_scale, model_options, seed, return_full=True)
return denoised, cond_pred, uncond_pred
def sampling_prepare(unet, x):
B, C, H, W = x.shape
memory_estimation_function = unet.model_options.get('memory_peak_estimation_modifier', unet.memory_required)
unet_inference_memory = memory_estimation_function([B * 2, C, H, W])
additional_inference_memory = unet.extra_preserved_memory_during_sampling
additional_model_patchers = unet.extra_model_patchers_during_sampling
if unet.controlnet_linked_list is not None:
additional_inference_memory += unet.controlnet_linked_list.inference_memory_requirements(unet.model_dtype())
additional_model_patchers += unet.controlnet_linked_list.get_models()
if unet.has_online_lora():
lora_memory = utils.nested_compute_size(unet.lora_patches, element_size=utils.dtype_to_element_size(unet.model.computation_dtype))
additional_inference_memory += lora_memory
memory_management.load_models_gpu(
models=[unet] + additional_model_patchers,
memory_required=unet_inference_memory,
hard_memory_preservation=additional_inference_memory
)
if unet.has_online_lora():
utils.nested_move_to_device(unet.lora_patches, device=unet.current_device, dtype=unet.model.computation_dtype)
real_model = unet.model
percent_to_timestep_function = lambda p: real_model.predictor.percent_to_sigma(p)
for cnet in unet.list_controlnets():
cnet.pre_run(real_model, percent_to_timestep_function)
return
def sampling_cleanup(unet):
if unet.has_online_lora():
utils.nested_move_to_device(unet.lora_patches, device=unet.offload_device)
for cnet in unet.list_controlnets():
cnet.cleanup()
cleanup_cache()
return