Spaces:
Runtime error
Runtime error
# Started from some codes from early ComfyUI and then 80% rewritten, | |
# mainly for supporting different special control methods in Forge | |
# Copyright Forge 2024 | |
import torch | |
import math | |
import collections | |
from backend import memory_management | |
from backend.sampling.condition import Condition, compile_conditions, compile_weighted_conditions | |
from backend.operations import cleanup_cache | |
from backend.args import dynamic_args, args | |
from backend import utils | |
def get_area_and_mult(conds, x_in, timestep_in): | |
area = (x_in.shape[2], x_in.shape[3], 0, 0) | |
strength = 1.0 | |
if 'timestep_start' in conds: | |
timestep_start = conds['timestep_start'] | |
if timestep_in[0] > timestep_start: | |
return None | |
if 'timestep_end' in conds: | |
timestep_end = conds['timestep_end'] | |
if timestep_in[0] < timestep_end: | |
return None | |
if 'area' in conds: | |
area = conds['area'] | |
if 'strength' in conds: | |
strength = conds['strength'] | |
input_x = x_in[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] | |
if 'mask' in conds: | |
mask_strength = 1.0 | |
if "mask_strength" in conds: | |
mask_strength = conds["mask_strength"] | |
mask = conds['mask'] | |
assert (mask.shape[1] == x_in.shape[2]) | |
assert (mask.shape[2] == x_in.shape[3]) | |
mask = mask[:, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] * mask_strength | |
mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) | |
else: | |
mask = torch.ones_like(input_x) | |
mult = mask * strength | |
if 'mask' not in conds: | |
rr = 8 | |
if area[2] != 0: | |
for t in range(rr): | |
mult[:, :, t:1 + t, :] *= ((1.0 / rr) * (t + 1)) | |
if (area[0] + area[2]) < x_in.shape[2]: | |
for t in range(rr): | |
mult[:, :, area[0] - 1 - t:area[0] - t, :] *= ((1.0 / rr) * (t + 1)) | |
if area[3] != 0: | |
for t in range(rr): | |
mult[:, :, :, t:1 + t] *= ((1.0 / rr) * (t + 1)) | |
if (area[1] + area[3]) < x_in.shape[3]: | |
for t in range(rr): | |
mult[:, :, :, area[1] - 1 - t:area[1] - t] *= ((1.0 / rr) * (t + 1)) | |
conditioning = {} | |
model_conds = conds["model_conds"] | |
for c in model_conds: | |
conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area) | |
control = conds.get('control', None) | |
patches = None | |
cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches']) | |
return cond_obj(input_x, mult, conditioning, area, control, patches) | |
def cond_equal_size(c1, c2): | |
if c1 is c2: | |
return True | |
if c1.keys() != c2.keys(): | |
return False | |
for k in c1: | |
if not c1[k].can_concat(c2[k]): | |
return False | |
return True | |
def can_concat_cond(c1, c2): | |
if c1.input_x.shape != c2.input_x.shape: | |
return False | |
def objects_concatable(obj1, obj2): | |
if (obj1 is None) != (obj2 is None): | |
return False | |
if obj1 is not None: | |
if obj1 is not obj2: | |
return False | |
return True | |
if not objects_concatable(c1.control, c2.control): | |
return False | |
if not objects_concatable(c1.patches, c2.patches): | |
return False | |
return cond_equal_size(c1.conditioning, c2.conditioning) | |
def cond_cat(c_list): | |
c_crossattn = [] | |
c_concat = [] | |
c_adm = [] | |
crossattn_max_len = 0 | |
temp = {} | |
for x in c_list: | |
for k in x: | |
cur = temp.get(k, []) | |
cur.append(x[k]) | |
temp[k] = cur | |
out = {} | |
for k in temp: | |
conds = temp[k] | |
out[k] = conds[0].concat(conds[1:]) | |
return out | |
def compute_cond_mark(cond_or_uncond, sigmas): | |
cond_or_uncond_size = int(sigmas.shape[0]) | |
cond_mark = [] | |
for cx in cond_or_uncond: | |
cond_mark += [cx] * cond_or_uncond_size | |
cond_mark = torch.Tensor(cond_mark).to(sigmas) | |
return cond_mark | |
def compute_cond_indices(cond_or_uncond, sigmas): | |
cl = int(sigmas.shape[0]) | |
cond_indices = [] | |
uncond_indices = [] | |
for i, cx in enumerate(cond_or_uncond): | |
if cx == 0: | |
cond_indices += list(range(i * cl, (i + 1) * cl)) | |
else: | |
uncond_indices += list(range(i * cl, (i + 1) * cl)) | |
return cond_indices, uncond_indices | |
def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): | |
out_cond = torch.zeros_like(x_in) | |
out_count = torch.ones_like(x_in) * 1e-37 | |
out_uncond = torch.zeros_like(x_in) | |
out_uncond_count = torch.ones_like(x_in) * 1e-37 | |
COND = 0 | |
UNCOND = 1 | |
to_run = [] | |
for x in cond: | |
p = get_area_and_mult(x, x_in, timestep) | |
if p is None: | |
continue | |
to_run += [(p, COND)] | |
if uncond is not None: | |
for x in uncond: | |
p = get_area_and_mult(x, x_in, timestep) | |
if p is None: | |
continue | |
to_run += [(p, UNCOND)] | |
while len(to_run) > 0: | |
first = to_run[0] | |
first_shape = first[0][0].shape | |
to_batch_temp = [] | |
for x in range(len(to_run)): | |
if can_concat_cond(to_run[x][0], first[0]): | |
to_batch_temp += [x] | |
to_batch_temp.reverse() | |
to_batch = to_batch_temp[:1] | |
if memory_management.signal_empty_cache: | |
memory_management.soft_empty_cache() | |
free_memory = memory_management.get_free_memory(x_in.device) | |
if (not args.disable_gpu_warning) and x_in.device.type == 'cuda': | |
free_memory_mb = free_memory / (1024.0 * 1024.0) | |
safe_memory_mb = 1536.0 | |
if free_memory_mb < safe_memory_mb: | |
print(f"\n\n----------------------") | |
print(f"[Low GPU VRAM Warning] Your current GPU free memory is {free_memory_mb:.2f} MB for this diffusion iteration.") | |
print(f"[Low GPU VRAM Warning] This number is lower than the safe value of {safe_memory_mb:.2f} MB.") | |
print(f"[Low GPU VRAM Warning] If you continue, you may cause NVIDIA GPU performance degradation for this diffusion process, and the speed may be extremely slow (about 10x slower).") | |
print(f"[Low GPU VRAM Warning] To solve the problem, you can set the 'GPU Weights' (on the top of page) to a lower value.") | |
print(f"[Low GPU VRAM Warning] If you cannot find 'GPU Weights', you can click the 'all' option in the 'UI' area on the left-top corner of the webpage.") | |
print(f"[Low GPU VRAM Warning] If you want to take the risk of NVIDIA GPU fallback and test the 10x slower speed, you can (but are highly not recommended to) add '--disable-gpu-warning' to CMD flags to remove this warning.") | |
print(f"----------------------\n\n") | |
for i in range(1, len(to_batch_temp) + 1): | |
batch_amount = to_batch_temp[:len(to_batch_temp) // i] | |
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:] | |
if model.memory_required(input_shape) < free_memory: | |
to_batch = batch_amount | |
break | |
input_x = [] | |
mult = [] | |
c = [] | |
cond_or_uncond = [] | |
area = [] | |
control = None | |
patches = None | |
for x in to_batch: | |
o = to_run.pop(x) | |
p = o[0] | |
input_x.append(p.input_x) | |
mult.append(p.mult) | |
c.append(p.conditioning) | |
area.append(p.area) | |
cond_or_uncond.append(o[1]) | |
control = p.control | |
patches = p.patches | |
batch_chunks = len(cond_or_uncond) | |
input_x = torch.cat(input_x) | |
c = cond_cat(c) | |
timestep_ = torch.cat([timestep] * batch_chunks) | |
transformer_options = {} | |
if 'transformer_options' in model_options: | |
transformer_options = model_options['transformer_options'].copy() | |
if patches is not None: | |
if "patches" in transformer_options: | |
cur_patches = transformer_options["patches"].copy() | |
for p in patches: | |
if p in cur_patches: | |
cur_patches[p] = cur_patches[p] + patches[p] | |
else: | |
cur_patches[p] = patches[p] | |
else: | |
transformer_options["patches"] = patches | |
transformer_options["cond_or_uncond"] = cond_or_uncond[:] | |
transformer_options["sigmas"] = timestep | |
transformer_options["cond_mark"] = compute_cond_mark(cond_or_uncond=cond_or_uncond, sigmas=timestep) | |
transformer_options["cond_indices"], transformer_options["uncond_indices"] = compute_cond_indices(cond_or_uncond=cond_or_uncond, sigmas=timestep) | |
c['transformer_options'] = transformer_options | |
if control is not None: | |
p = control | |
while p is not None: | |
p.transformer_options = transformer_options | |
p = p.previous_controlnet | |
control_cond = c.copy() # get_control may change items in this dict, so we need to copy it | |
c['control'] = control.get_control(input_x, timestep_, control_cond, len(cond_or_uncond)) | |
c['control_model'] = control | |
if 'model_function_wrapper' in model_options: | |
output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) | |
else: | |
output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks) | |
del input_x | |
for o in range(batch_chunks): | |
if cond_or_uncond[o] == COND: | |
out_cond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] | |
out_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o] | |
else: | |
out_uncond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] | |
out_uncond_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o] | |
del mult | |
out_cond /= out_count | |
del out_count | |
out_uncond /= out_uncond_count | |
del out_uncond_count | |
return out_cond, out_uncond | |
def sampling_function_inner(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None, return_full=False): | |
edit_strength = sum((item['strength'] if 'strength' in item else 1) for item in cond) | |
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False: | |
uncond_ = None | |
else: | |
uncond_ = uncond | |
for fn in model_options.get("sampler_pre_cfg_function", []): | |
model, cond, uncond_, x, timestep, model_options = fn(model, cond, uncond_, x, timestep, model_options) | |
cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options) | |
if "sampler_cfg_function" in model_options: | |
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep, | |
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options} | |
cfg_result = x - model_options["sampler_cfg_function"](args) | |
elif not math.isclose(edit_strength, 1.0): | |
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale * edit_strength | |
else: | |
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale | |
for fn in model_options.get("sampler_post_cfg_function", []): | |
args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred, | |
"sigma": timestep, "model_options": model_options, "input": x} | |
cfg_result = fn(args) | |
if return_full: | |
return cfg_result, cond_pred, uncond_pred | |
return cfg_result | |
def sampling_function(self, denoiser_params, cond_scale, cond_composition): | |
unet_patcher = self.inner_model.inner_model.forge_objects.unet | |
model = unet_patcher.model | |
control = unet_patcher.controlnet_linked_list | |
extra_concat_condition = unet_patcher.extra_concat_condition | |
x = denoiser_params.x | |
timestep = denoiser_params.sigma | |
uncond = compile_conditions(denoiser_params.text_uncond) | |
cond = compile_weighted_conditions(denoiser_params.text_cond, cond_composition) | |
model_options = unet_patcher.model_options | |
seed = self.p.seeds[0] | |
if extra_concat_condition is not None: | |
image_cond_in = extra_concat_condition | |
else: | |
image_cond_in = denoiser_params.image_cond | |
if isinstance(image_cond_in, torch.Tensor): | |
if image_cond_in.shape[0] == x.shape[0] \ | |
and image_cond_in.shape[2] == x.shape[2] \ | |
and image_cond_in.shape[3] == x.shape[3]: | |
if uncond is not None: | |
for i in range(len(uncond)): | |
uncond[i]['model_conds']['c_concat'] = Condition(image_cond_in) | |
for i in range(len(cond)): | |
cond[i]['model_conds']['c_concat'] = Condition(image_cond_in) | |
if control is not None: | |
for h in cond: | |
h['control'] = control | |
if uncond is not None: | |
for h in uncond: | |
h['control'] = control | |
for modifier in model_options.get('conditioning_modifiers', []): | |
model, x, timestep, uncond, cond, cond_scale, model_options, seed = modifier(model, x, timestep, uncond, cond, cond_scale, model_options, seed) | |
denoised, cond_pred, uncond_pred = sampling_function_inner(model, x, timestep, uncond, cond, cond_scale, model_options, seed, return_full=True) | |
return denoised, cond_pred, uncond_pred | |
def sampling_prepare(unet, x): | |
B, C, H, W = x.shape | |
memory_estimation_function = unet.model_options.get('memory_peak_estimation_modifier', unet.memory_required) | |
unet_inference_memory = memory_estimation_function([B * 2, C, H, W]) | |
additional_inference_memory = unet.extra_preserved_memory_during_sampling | |
additional_model_patchers = unet.extra_model_patchers_during_sampling | |
if unet.controlnet_linked_list is not None: | |
additional_inference_memory += unet.controlnet_linked_list.inference_memory_requirements(unet.model_dtype()) | |
additional_model_patchers += unet.controlnet_linked_list.get_models() | |
if unet.has_online_lora(): | |
lora_memory = utils.nested_compute_size(unet.lora_patches, element_size=utils.dtype_to_element_size(unet.model.computation_dtype)) | |
additional_inference_memory += lora_memory | |
memory_management.load_models_gpu( | |
models=[unet] + additional_model_patchers, | |
memory_required=unet_inference_memory, | |
hard_memory_preservation=additional_inference_memory | |
) | |
if unet.has_online_lora(): | |
utils.nested_move_to_device(unet.lora_patches, device=unet.current_device, dtype=unet.model.computation_dtype) | |
real_model = unet.model | |
percent_to_timestep_function = lambda p: real_model.predictor.percent_to_sigma(p) | |
for cnet in unet.list_controlnets(): | |
cnet.pre_run(real_model, percent_to_timestep_function) | |
return | |
def sampling_cleanup(unet): | |
if unet.has_online_lora(): | |
utils.nested_move_to_device(unet.lora_patches, device=unet.offload_device) | |
for cnet in unet.list_controlnets(): | |
cnet.cleanup() | |
cleanup_cache() | |
return | |