NilEneb's picture
Upload folder using huggingface_hub
ad93086 verified
import math
import torch
from collections import namedtuple
from backend.text_processing import parsing, emphasis
from backend.text_processing.textual_inversion import EmbeddingDatabase
from backend import memory_management
from modules.shared import opts
PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding'])
last_extra_generation_params = {}
class PromptChunk:
def __init__(self):
self.tokens = []
self.multipliers = []
self.fixes = []
class CLIPEmbeddingForTextualInversion(torch.nn.Module):
def __init__(self, wrapped, embeddings, textual_inversion_key='clip_l'):
super().__init__()
self.wrapped = wrapped
self.embeddings = embeddings
self.textual_inversion_key = textual_inversion_key
self.weight = self.wrapped.weight
def forward(self, input_ids):
batch_fixes = self.embeddings.fixes
self.embeddings.fixes = None
inputs_embeds = self.wrapped(input_ids)
if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
return inputs_embeds
vecs = []
for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes:
emb = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec
emb = emb.to(inputs_embeds)
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]).to(dtype=inputs_embeds.dtype)
vecs.append(tensor)
return torch.stack(vecs)
class ClassicTextProcessingEngine:
def __init__(
self, text_encoder, tokenizer, chunk_length=75,
embedding_dir=None, embedding_key='clip_l', embedding_expected_shape=768, emphasis_name="Original",
text_projection=False, minimal_clip_skip=1, clip_skip=1, return_pooled=False, final_layer_norm=True
):
super().__init__()
self.embeddings = EmbeddingDatabase(tokenizer, embedding_expected_shape)
if isinstance(embedding_dir, str):
self.embeddings.add_embedding_dir(embedding_dir)
self.embeddings.load_textual_inversion_embeddings()
self.embedding_key = embedding_key
self.text_encoder = text_encoder
self.tokenizer = tokenizer
self.emphasis = emphasis.get_current_option(opts.emphasis)()
self.text_projection = text_projection
self.minimal_clip_skip = minimal_clip_skip
self.clip_skip = clip_skip
self.return_pooled = return_pooled
self.final_layer_norm = final_layer_norm
self.chunk_length = chunk_length
self.id_start = self.tokenizer.bos_token_id
self.id_end = self.tokenizer.eos_token_id
self.id_pad = self.tokenizer.pad_token_id
model_embeddings = text_encoder.transformer.text_model.embeddings
model_embeddings.token_embedding = CLIPEmbeddingForTextualInversion(model_embeddings.token_embedding, self.embeddings, textual_inversion_key=embedding_key)
vocab = self.tokenizer.get_vocab()
self.comma_token = vocab.get(',</w>', None)
self.token_mults = {}
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens:
mult = 1.0
for c in text:
if c == '[':
mult /= 1.1
if c == ']':
mult *= 1.1
if c == '(':
mult *= 1.1
if c == ')':
mult /= 1.1
if mult != 1.0:
self.token_mults[ident] = mult
def empty_chunk(self):
chunk = PromptChunk()
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1)
chunk.multipliers = [1.0] * (self.chunk_length + 2)
return chunk
def get_target_prompt_token_count(self, token_count):
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length
def tokenize(self, texts):
tokenized = self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
return tokenized
def encode_with_transformers(self, tokens):
target_device = memory_management.text_encoder_device()
self.text_encoder.transformer.text_model.embeddings.position_ids = self.text_encoder.transformer.text_model.embeddings.position_ids.to(device=target_device)
self.text_encoder.transformer.text_model.embeddings.position_embedding = self.text_encoder.transformer.text_model.embeddings.position_embedding.to(dtype=torch.float32)
self.text_encoder.transformer.text_model.embeddings.token_embedding = self.text_encoder.transformer.text_model.embeddings.token_embedding.to(dtype=torch.float32)
tokens = tokens.to(target_device)
outputs = self.text_encoder.transformer(tokens, output_hidden_states=True)
layer_id = - max(self.clip_skip, self.minimal_clip_skip)
z = outputs.hidden_states[layer_id]
if self.final_layer_norm:
z = self.text_encoder.transformer.text_model.final_layer_norm(z)
if self.return_pooled:
pooled_output = outputs.pooler_output
if self.text_projection:
pooled_output = self.text_encoder.transformer.text_projection(pooled_output)
z.pooled = pooled_output
return z
def tokenize_line(self, line):
parsed = parsing.parse_prompt_attention(line, self.emphasis.name)
tokenized = self.tokenize([text for text, _ in parsed])
chunks = []
chunk = PromptChunk()
token_count = 0
last_comma = -1
def next_chunk(is_last=False):
nonlocal token_count
nonlocal last_comma
nonlocal chunk
if is_last:
token_count += len(chunk.tokens)
else:
token_count += self.chunk_length
to_add = self.chunk_length - len(chunk.tokens)
if to_add > 0:
chunk.tokens += [self.id_end] * to_add
chunk.multipliers += [1.0] * to_add
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end]
chunk.multipliers = [1.0] + chunk.multipliers + [1.0]
last_comma = -1
chunks.append(chunk)
chunk = PromptChunk()
for tokens, (text, weight) in zip(tokenized, parsed):
if text == 'BREAK' and weight == -1:
next_chunk()
continue
position = 0
while position < len(tokens):
token = tokens[position]
comma_padding_backtrack = 20
if token == self.comma_token:
last_comma = len(chunk.tokens)
elif comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= comma_padding_backtrack:
break_location = last_comma + 1
reloc_tokens = chunk.tokens[break_location:]
reloc_mults = chunk.multipliers[break_location:]
chunk.tokens = chunk.tokens[:break_location]
chunk.multipliers = chunk.multipliers[:break_location]
next_chunk()
chunk.tokens = reloc_tokens
chunk.multipliers = reloc_mults
if len(chunk.tokens) == self.chunk_length:
next_chunk()
embedding, embedding_length_in_tokens = self.embeddings.find_embedding_at_position(tokens, position)
if embedding is None:
chunk.tokens.append(token)
chunk.multipliers.append(weight)
position += 1
continue
emb_len = int(embedding.vectors)
if len(chunk.tokens) + emb_len > self.chunk_length:
next_chunk()
chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding))
chunk.tokens += [0] * emb_len
chunk.multipliers += [weight] * emb_len
position += embedding_length_in_tokens
if chunk.tokens or not chunks:
next_chunk(is_last=True)
return chunks, token_count
def process_texts(self, texts):
token_count = 0
cache = {}
batch_chunks = []
for line in texts:
if line in cache:
chunks = cache[line]
else:
chunks, current_token_count = self.tokenize_line(line)
token_count = max(current_token_count, token_count)
cache[line] = chunks
batch_chunks.append(chunks)
return batch_chunks, token_count
def __call__(self, texts):
self.emphasis = emphasis.get_current_option(opts.emphasis)()
batch_chunks, token_count = self.process_texts(texts)
used_embeddings = {}
chunk_count = max([len(x) for x in batch_chunks])
zs = []
for i in range(chunk_count):
batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks]
tokens = [x.tokens for x in batch_chunk]
multipliers = [x.multipliers for x in batch_chunk]
self.embeddings.fixes = [x.fixes for x in batch_chunk]
for fixes in self.embeddings.fixes:
for _position, embedding in fixes:
used_embeddings[embedding.name] = embedding
z = self.process_tokens(tokens, multipliers)
zs.append(z)
global last_extra_generation_params
if used_embeddings:
names = []
for name, embedding in used_embeddings.items():
print(f'[Textual Inversion] Used Embedding [{name}] in CLIP of [{self.embedding_key}]')
names.append(name.replace(":", "").replace(",", ""))
if "TI" in last_extra_generation_params:
last_extra_generation_params["TI"] += ", " + ", ".join(names)
else:
last_extra_generation_params["TI"] = ", ".join(names)
if any(x for x in texts if "(" in x or "[" in x) and self.emphasis.name != "Original":
last_extra_generation_params["Emphasis"] = self.emphasis.name
if self.return_pooled:
return torch.hstack(zs), zs[0].pooled
else:
return torch.hstack(zs)
def process_tokens(self, remade_batch_tokens, batch_multipliers):
tokens = torch.asarray(remade_batch_tokens)
if self.id_end != self.id_pad:
for batch_pos in range(len(remade_batch_tokens)):
index = remade_batch_tokens[batch_pos].index(self.id_end)
tokens[batch_pos, index + 1:tokens.shape[1]] = self.id_pad
z = self.encode_with_transformers(tokens)
pooled = getattr(z, 'pooled', None)
self.emphasis.tokens = remade_batch_tokens
self.emphasis.multipliers = torch.asarray(batch_multipliers).to(z)
self.emphasis.z = z
self.emphasis.after_transformers()
z = self.emphasis.z
if pooled is not None:
z.pooled = pooled
return z