Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from collections import namedtuple | |
from backend.text_processing import parsing, emphasis | |
from backend.text_processing.textual_inversion import EmbeddingDatabase | |
from backend import memory_management | |
from modules.shared import opts | |
PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding']) | |
last_extra_generation_params = {} | |
class PromptChunk: | |
def __init__(self): | |
self.tokens = [] | |
self.multipliers = [] | |
self.fixes = [] | |
class CLIPEmbeddingForTextualInversion(torch.nn.Module): | |
def __init__(self, wrapped, embeddings, textual_inversion_key='clip_l'): | |
super().__init__() | |
self.wrapped = wrapped | |
self.embeddings = embeddings | |
self.textual_inversion_key = textual_inversion_key | |
self.weight = self.wrapped.weight | |
def forward(self, input_ids): | |
batch_fixes = self.embeddings.fixes | |
self.embeddings.fixes = None | |
inputs_embeds = self.wrapped(input_ids) | |
if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0: | |
return inputs_embeds | |
vecs = [] | |
for fixes, tensor in zip(batch_fixes, inputs_embeds): | |
for offset, embedding in fixes: | |
emb = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec | |
emb = emb.to(inputs_embeds) | |
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0]) | |
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]).to(dtype=inputs_embeds.dtype) | |
vecs.append(tensor) | |
return torch.stack(vecs) | |
class ClassicTextProcessingEngine: | |
def __init__( | |
self, text_encoder, tokenizer, chunk_length=75, | |
embedding_dir=None, embedding_key='clip_l', embedding_expected_shape=768, emphasis_name="Original", | |
text_projection=False, minimal_clip_skip=1, clip_skip=1, return_pooled=False, final_layer_norm=True | |
): | |
super().__init__() | |
self.embeddings = EmbeddingDatabase(tokenizer, embedding_expected_shape) | |
if isinstance(embedding_dir, str): | |
self.embeddings.add_embedding_dir(embedding_dir) | |
self.embeddings.load_textual_inversion_embeddings() | |
self.embedding_key = embedding_key | |
self.text_encoder = text_encoder | |
self.tokenizer = tokenizer | |
self.emphasis = emphasis.get_current_option(opts.emphasis)() | |
self.text_projection = text_projection | |
self.minimal_clip_skip = minimal_clip_skip | |
self.clip_skip = clip_skip | |
self.return_pooled = return_pooled | |
self.final_layer_norm = final_layer_norm | |
self.chunk_length = chunk_length | |
self.id_start = self.tokenizer.bos_token_id | |
self.id_end = self.tokenizer.eos_token_id | |
self.id_pad = self.tokenizer.pad_token_id | |
model_embeddings = text_encoder.transformer.text_model.embeddings | |
model_embeddings.token_embedding = CLIPEmbeddingForTextualInversion(model_embeddings.token_embedding, self.embeddings, textual_inversion_key=embedding_key) | |
vocab = self.tokenizer.get_vocab() | |
self.comma_token = vocab.get(',</w>', None) | |
self.token_mults = {} | |
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k] | |
for text, ident in tokens_with_parens: | |
mult = 1.0 | |
for c in text: | |
if c == '[': | |
mult /= 1.1 | |
if c == ']': | |
mult *= 1.1 | |
if c == '(': | |
mult *= 1.1 | |
if c == ')': | |
mult /= 1.1 | |
if mult != 1.0: | |
self.token_mults[ident] = mult | |
def empty_chunk(self): | |
chunk = PromptChunk() | |
chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1) | |
chunk.multipliers = [1.0] * (self.chunk_length + 2) | |
return chunk | |
def get_target_prompt_token_count(self, token_count): | |
return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length | |
def tokenize(self, texts): | |
tokenized = self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] | |
return tokenized | |
def encode_with_transformers(self, tokens): | |
target_device = memory_management.text_encoder_device() | |
self.text_encoder.transformer.text_model.embeddings.position_ids = self.text_encoder.transformer.text_model.embeddings.position_ids.to(device=target_device) | |
self.text_encoder.transformer.text_model.embeddings.position_embedding = self.text_encoder.transformer.text_model.embeddings.position_embedding.to(dtype=torch.float32) | |
self.text_encoder.transformer.text_model.embeddings.token_embedding = self.text_encoder.transformer.text_model.embeddings.token_embedding.to(dtype=torch.float32) | |
tokens = tokens.to(target_device) | |
outputs = self.text_encoder.transformer(tokens, output_hidden_states=True) | |
layer_id = - max(self.clip_skip, self.minimal_clip_skip) | |
z = outputs.hidden_states[layer_id] | |
if self.final_layer_norm: | |
z = self.text_encoder.transformer.text_model.final_layer_norm(z) | |
if self.return_pooled: | |
pooled_output = outputs.pooler_output | |
if self.text_projection: | |
pooled_output = self.text_encoder.transformer.text_projection(pooled_output) | |
z.pooled = pooled_output | |
return z | |
def tokenize_line(self, line): | |
parsed = parsing.parse_prompt_attention(line, self.emphasis.name) | |
tokenized = self.tokenize([text for text, _ in parsed]) | |
chunks = [] | |
chunk = PromptChunk() | |
token_count = 0 | |
last_comma = -1 | |
def next_chunk(is_last=False): | |
nonlocal token_count | |
nonlocal last_comma | |
nonlocal chunk | |
if is_last: | |
token_count += len(chunk.tokens) | |
else: | |
token_count += self.chunk_length | |
to_add = self.chunk_length - len(chunk.tokens) | |
if to_add > 0: | |
chunk.tokens += [self.id_end] * to_add | |
chunk.multipliers += [1.0] * to_add | |
chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end] | |
chunk.multipliers = [1.0] + chunk.multipliers + [1.0] | |
last_comma = -1 | |
chunks.append(chunk) | |
chunk = PromptChunk() | |
for tokens, (text, weight) in zip(tokenized, parsed): | |
if text == 'BREAK' and weight == -1: | |
next_chunk() | |
continue | |
position = 0 | |
while position < len(tokens): | |
token = tokens[position] | |
comma_padding_backtrack = 20 | |
if token == self.comma_token: | |
last_comma = len(chunk.tokens) | |
elif comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= comma_padding_backtrack: | |
break_location = last_comma + 1 | |
reloc_tokens = chunk.tokens[break_location:] | |
reloc_mults = chunk.multipliers[break_location:] | |
chunk.tokens = chunk.tokens[:break_location] | |
chunk.multipliers = chunk.multipliers[:break_location] | |
next_chunk() | |
chunk.tokens = reloc_tokens | |
chunk.multipliers = reloc_mults | |
if len(chunk.tokens) == self.chunk_length: | |
next_chunk() | |
embedding, embedding_length_in_tokens = self.embeddings.find_embedding_at_position(tokens, position) | |
if embedding is None: | |
chunk.tokens.append(token) | |
chunk.multipliers.append(weight) | |
position += 1 | |
continue | |
emb_len = int(embedding.vectors) | |
if len(chunk.tokens) + emb_len > self.chunk_length: | |
next_chunk() | |
chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding)) | |
chunk.tokens += [0] * emb_len | |
chunk.multipliers += [weight] * emb_len | |
position += embedding_length_in_tokens | |
if chunk.tokens or not chunks: | |
next_chunk(is_last=True) | |
return chunks, token_count | |
def process_texts(self, texts): | |
token_count = 0 | |
cache = {} | |
batch_chunks = [] | |
for line in texts: | |
if line in cache: | |
chunks = cache[line] | |
else: | |
chunks, current_token_count = self.tokenize_line(line) | |
token_count = max(current_token_count, token_count) | |
cache[line] = chunks | |
batch_chunks.append(chunks) | |
return batch_chunks, token_count | |
def __call__(self, texts): | |
self.emphasis = emphasis.get_current_option(opts.emphasis)() | |
batch_chunks, token_count = self.process_texts(texts) | |
used_embeddings = {} | |
chunk_count = max([len(x) for x in batch_chunks]) | |
zs = [] | |
for i in range(chunk_count): | |
batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks] | |
tokens = [x.tokens for x in batch_chunk] | |
multipliers = [x.multipliers for x in batch_chunk] | |
self.embeddings.fixes = [x.fixes for x in batch_chunk] | |
for fixes in self.embeddings.fixes: | |
for _position, embedding in fixes: | |
used_embeddings[embedding.name] = embedding | |
z = self.process_tokens(tokens, multipliers) | |
zs.append(z) | |
global last_extra_generation_params | |
if used_embeddings: | |
names = [] | |
for name, embedding in used_embeddings.items(): | |
print(f'[Textual Inversion] Used Embedding [{name}] in CLIP of [{self.embedding_key}]') | |
names.append(name.replace(":", "").replace(",", "")) | |
if "TI" in last_extra_generation_params: | |
last_extra_generation_params["TI"] += ", " + ", ".join(names) | |
else: | |
last_extra_generation_params["TI"] = ", ".join(names) | |
if any(x for x in texts if "(" in x or "[" in x) and self.emphasis.name != "Original": | |
last_extra_generation_params["Emphasis"] = self.emphasis.name | |
if self.return_pooled: | |
return torch.hstack(zs), zs[0].pooled | |
else: | |
return torch.hstack(zs) | |
def process_tokens(self, remade_batch_tokens, batch_multipliers): | |
tokens = torch.asarray(remade_batch_tokens) | |
if self.id_end != self.id_pad: | |
for batch_pos in range(len(remade_batch_tokens)): | |
index = remade_batch_tokens[batch_pos].index(self.id_end) | |
tokens[batch_pos, index + 1:tokens.shape[1]] = self.id_pad | |
z = self.encode_with_transformers(tokens) | |
pooled = getattr(z, 'pooled', None) | |
self.emphasis.tokens = remade_batch_tokens | |
self.emphasis.multipliers = torch.asarray(batch_multipliers).to(z) | |
self.emphasis.z = z | |
self.emphasis.after_transformers() | |
z = self.emphasis.z | |
if pooled is not None: | |
z.pooled = pooled | |
return z | |