Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import base64 | |
import json | |
import zlib | |
import numpy as np | |
import safetensors.torch | |
from PIL import Image | |
class EmbeddingEncoder(json.JSONEncoder): | |
def default(self, obj): | |
if isinstance(obj, torch.Tensor): | |
return {'TORCHTENSOR': obj.cpu().detach().numpy().tolist()} | |
return json.JSONEncoder.default(self, obj) | |
class EmbeddingDecoder(json.JSONDecoder): | |
def __init__(self, *args, **kwargs): | |
json.JSONDecoder.__init__(self, *args, object_hook=self.object_hook, **kwargs) | |
def object_hook(self, d): | |
if 'TORCHTENSOR' in d: | |
return torch.from_numpy(np.array(d['TORCHTENSOR'])) | |
return d | |
def embedding_to_b64(data): | |
d = json.dumps(data, cls=EmbeddingEncoder) | |
return base64.b64encode(d.encode()) | |
def embedding_from_b64(data): | |
d = base64.b64decode(data) | |
return json.loads(d, cls=EmbeddingDecoder) | |
def lcg(m=2 ** 32, a=1664525, c=1013904223, seed=0): | |
while True: | |
seed = (a * seed + c) % m | |
yield seed % 255 | |
def xor_block(block): | |
g = lcg() | |
randblock = np.array([next(g) for _ in range(np.prod(block.shape))]).astype(np.uint8).reshape(block.shape) | |
return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F) | |
def crop_black(img, tol=0): | |
mask = (img > tol).all(2) | |
mask0, mask1 = mask.any(0), mask.any(1) | |
col_start, col_end = mask0.argmax(), mask.shape[1] - mask0[::-1].argmax() | |
row_start, row_end = mask1.argmax(), mask.shape[0] - mask1[::-1].argmax() | |
return img[row_start:row_end, col_start:col_end] | |
def extract_image_data_embed(image): | |
d = 3 | |
outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) & 0x0F | |
black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0) | |
if black_cols[0].shape[0] < 2: | |
print(f'{os.path.basename(getattr(image, "filename", "unknown image file"))}: no embedded information found.') | |
return None | |
data_block_lower = outarr[:, :black_cols[0].min(), :].astype(np.uint8) | |
data_block_upper = outarr[:, black_cols[0].max() + 1:, :].astype(np.uint8) | |
data_block_lower = xor_block(data_block_lower) | |
data_block_upper = xor_block(data_block_upper) | |
data_block = (data_block_upper << 4) | (data_block_lower) | |
data_block = data_block.flatten().tobytes() | |
data = zlib.decompress(data_block) | |
return json.loads(data, cls=EmbeddingDecoder) | |
class Embedding: | |
def __init__(self, vec, name, step=None): | |
self.vec = vec | |
self.name = name | |
self.step = step | |
self.shape = None | |
self.vectors = 0 | |
self.sd_checkpoint = None | |
self.sd_checkpoint_name = None | |
class DirWithTextualInversionEmbeddings: | |
def __init__(self, path): | |
self.path = path | |
self.mtime = None | |
def has_changed(self): | |
if not os.path.isdir(self.path): | |
return False | |
mt = os.path.getmtime(self.path) | |
if self.mtime is None or mt > self.mtime: | |
return True | |
def update(self): | |
if not os.path.isdir(self.path): | |
return | |
self.mtime = os.path.getmtime(self.path) | |
class EmbeddingDatabase: | |
def __init__(self, tokenizer, expected_shape=-1): | |
self.ids_lookup = {} | |
self.word_embeddings = {} | |
self.embedding_dirs = {} | |
self.skipped_embeddings = {} | |
self.expected_shape = expected_shape | |
self.tokenizer = tokenizer | |
self.fixes = [] | |
def add_embedding_dir(self, path): | |
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path) | |
def clear_embedding_dirs(self): | |
self.embedding_dirs.clear() | |
def register_embedding(self, embedding): | |
return self.register_embedding_by_name(embedding, embedding.name) | |
def register_embedding_by_name(self, embedding, name): | |
ids = self.tokenizer([name], truncation=False, add_special_tokens=False)["input_ids"][0] | |
first_id = ids[0] | |
if first_id not in self.ids_lookup: | |
self.ids_lookup[first_id] = [] | |
if name in self.word_embeddings: | |
lookup = [x for x in self.ids_lookup[first_id] if x[1].name != name] | |
else: | |
lookup = self.ids_lookup[first_id] | |
if embedding is not None: | |
lookup += [(ids, embedding)] | |
self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True) | |
if embedding is None: | |
if name in self.word_embeddings: | |
del self.word_embeddings[name] | |
if len(self.ids_lookup[first_id]) == 0: | |
del self.ids_lookup[first_id] | |
return None | |
self.word_embeddings[name] = embedding | |
return embedding | |
def load_from_file(self, path, filename): | |
name, ext = os.path.splitext(filename) | |
ext = ext.upper() | |
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']: | |
_, second_ext = os.path.splitext(name) | |
if second_ext.upper() == '.PREVIEW': | |
return | |
embed_image = Image.open(path) | |
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text: | |
data = embedding_from_b64(embed_image.text['sd-ti-embedding']) | |
name = data.get('name', name) | |
else: | |
data = extract_image_data_embed(embed_image) | |
if data: | |
name = data.get('name', name) | |
else: | |
return | |
elif ext in ['.BIN', '.PT']: | |
data = torch.load(path, map_location="cpu") | |
elif ext in ['.SAFETENSORS']: | |
data = safetensors.torch.load_file(path, device="cpu") | |
else: | |
return | |
if data is not None: | |
embedding = create_embedding_from_data(data, name, filename=filename, filepath=path) | |
if self.expected_shape == -1 or self.expected_shape == embedding.shape: | |
self.register_embedding(embedding) | |
else: | |
self.skipped_embeddings[name] = embedding | |
else: | |
print(f"Unable to load Textual inversion embedding due to data issue: '{name}'.") | |
def load_from_dir(self, embdir): | |
if not os.path.isdir(embdir.path): | |
return | |
for root, _, fns in os.walk(embdir.path, followlinks=True): | |
for fn in fns: | |
try: | |
fullfn = os.path.join(root, fn) | |
if os.stat(fullfn).st_size == 0: | |
continue | |
self.load_from_file(fullfn, fn) | |
except Exception: | |
print(f"Error loading embedding {fn}") | |
continue | |
def load_textual_inversion_embeddings(self): | |
self.ids_lookup.clear() | |
self.word_embeddings.clear() | |
self.skipped_embeddings.clear() | |
for embdir in self.embedding_dirs.values(): | |
self.load_from_dir(embdir) | |
embdir.update() | |
return | |
def find_embedding_at_position(self, tokens, offset): | |
token = tokens[offset] | |
possible_matches = self.ids_lookup.get(token, None) | |
if possible_matches is None: | |
return None, None | |
for ids, embedding in possible_matches: | |
if tokens[offset:offset + len(ids)] == ids: | |
return embedding, len(ids) | |
return None, None | |
def create_embedding_from_data(data, name, filename='unknown embedding file', filepath=None): | |
if 'string_to_param' in data: # textual inversion embeddings | |
param_dict = data['string_to_param'] | |
param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11 | |
assert len(param_dict) == 1, 'embedding file has multiple terms in it' | |
emb = next(iter(param_dict.items()))[1] | |
vec = emb.detach().to(dtype=torch.float32) | |
shape = vec.shape[-1] | |
vectors = vec.shape[0] | |
elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding | |
vec = {k: v.detach().to(dtype=torch.float32) for k, v in data.items()} | |
shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1] | |
vectors = data['clip_g'].shape[0] | |
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts | |
assert len(data.keys()) == 1, 'embedding file has multiple terms in it' | |
emb = next(iter(data.values())) | |
if len(emb.shape) == 1: | |
emb = emb.unsqueeze(0) | |
vec = emb.detach().to(dtype=torch.float32) | |
shape = vec.shape[-1] | |
vectors = vec.shape[0] | |
else: | |
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.") | |
embedding = Embedding(vec, name) | |
embedding.step = data.get('step', None) | |
embedding.sd_checkpoint = data.get('sd_checkpoint', None) | |
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) | |
embedding.vectors = vectors | |
embedding.shape = shape | |
if filepath: | |
embedding.filename = filepath | |
return embedding | |