NilEneb's picture
Upload folder using huggingface_hub
ad93086 verified
import os
import torch
import gradio as gr
from gradio.context import Context
from modules import shared_items, shared, ui_common, sd_models, processing, infotext_utils, paths, ui_loadsave
from backend import memory_management, stream
from backend.args import dynamic_args
from modules.shared import cmd_opts
total_vram = int(memory_management.total_vram)
ui_forge_preset: gr.Radio = None
ui_checkpoint: gr.Dropdown = None
ui_vae: gr.Dropdown = None
ui_clip_skip: gr.Slider = None
ui_forge_unet_storage_dtype_options: gr.Radio = None
ui_forge_async_loading: gr.Radio = None
ui_forge_pin_shared_memory: gr.Radio = None
ui_forge_inference_memory: gr.Slider = None
forge_unet_storage_dtype_options = {
'Automatic': (None, False),
'Automatic (fp16 LoRA)': (None, True),
'bnb-nf4': ('nf4', False),
'bnb-nf4 (fp16 LoRA)': ('nf4', True),
'float8-e4m3fn': (torch.float8_e4m3fn, False),
'float8-e4m3fn (fp16 LoRA)': (torch.float8_e4m3fn, True),
'bnb-fp4': ('fp4', False),
'bnb-fp4 (fp16 LoRA)': ('fp4', True),
'float8-e5m2': (torch.float8_e5m2, False),
'float8-e5m2 (fp16 LoRA)': (torch.float8_e5m2, True),
}
module_list = {}
def bind_to_opts(comp, k, save=False, callback=None):
def on_change(v):
shared.opts.set(k, v)
if save:
shared.opts.save(shared.config_filename)
if callback is not None:
callback()
return
comp.change(on_change, inputs=[comp], queue=False, show_progress=False)
return
def make_checkpoint_manager_ui():
global ui_checkpoint, ui_vae, ui_clip_skip, ui_forge_unet_storage_dtype_options, ui_forge_async_loading, ui_forge_pin_shared_memory, ui_forge_inference_memory, ui_forge_preset
if shared.opts.sd_model_checkpoint in [None, 'None', 'none', '']:
if len(sd_models.checkpoints_list) == 0:
sd_models.list_models()
if len(sd_models.checkpoints_list) > 0:
shared.opts.set('sd_model_checkpoint', next(iter(sd_models.checkpoints_list.values())).name)
ui_forge_preset = gr.Radio(label="UI", value=lambda: shared.opts.forge_preset, choices=['sd', 'xl', 'flux', 'all'], elem_id="forge_ui_preset")
ckpt_list, vae_list = refresh_models()
ui_checkpoint = gr.Dropdown(
value=lambda: shared.opts.sd_model_checkpoint,
label="Checkpoint",
elem_classes=['model_selection'],
choices=ckpt_list
)
ui_vae = gr.Dropdown(
value=lambda: [os.path.basename(x) for x in shared.opts.forge_additional_modules],
multiselect=True,
label="VAE / Text Encoder",
render=False,
choices=vae_list
)
def gr_refresh_models():
a, b = refresh_models()
return gr.update(choices=a), gr.update(choices=b)
refresh_button = ui_common.ToolButton(value=ui_common.refresh_symbol, elem_id=f"forge_refresh_checkpoint", tooltip="Refresh")
refresh_button.click(
fn=gr_refresh_models,
inputs=[],
outputs=[ui_checkpoint, ui_vae],
show_progress=False,
queue=False
)
Context.root_block.load(
fn=gr_refresh_models,
inputs=[],
outputs=[ui_checkpoint, ui_vae],
show_progress=False,
queue=False
)
ui_vae.render()
ui_forge_unet_storage_dtype_options = gr.Dropdown(label="Diffusion in Low Bits", value=lambda: shared.opts.forge_unet_storage_dtype, choices=list(forge_unet_storage_dtype_options.keys()))
bind_to_opts(ui_forge_unet_storage_dtype_options, 'forge_unet_storage_dtype', save=True, callback=refresh_model_loading_parameters)
ui_forge_async_loading = gr.Radio(label="Swap Method", value=lambda: shared.opts.forge_async_loading, choices=['Queue', 'Async'])
ui_forge_pin_shared_memory = gr.Radio(label="Swap Location", value=lambda: shared.opts.forge_pin_shared_memory, choices=['CPU', 'Shared'])
ui_forge_inference_memory = gr.Slider(label="GPU Weights (MB)", value=lambda: total_vram - shared.opts.forge_inference_memory, minimum=0, maximum=int(memory_management.total_vram), step=1)
mem_comps = [ui_forge_inference_memory, ui_forge_async_loading, ui_forge_pin_shared_memory]
ui_forge_inference_memory.change(ui_refresh_memory_management_settings, inputs=mem_comps, queue=False, show_progress=False)
ui_forge_async_loading.change(ui_refresh_memory_management_settings, inputs=mem_comps, queue=False, show_progress=False)
ui_forge_pin_shared_memory.change(ui_refresh_memory_management_settings, inputs=mem_comps, queue=False, show_progress=False)
Context.root_block.load(ui_refresh_memory_management_settings, inputs=mem_comps, queue=False, show_progress=False)
ui_clip_skip = gr.Slider(label="Clip skip", value=lambda: shared.opts.CLIP_stop_at_last_layers, **{"minimum": 1, "maximum": 12, "step": 1})
bind_to_opts(ui_clip_skip, 'CLIP_stop_at_last_layers', save=True)
ui_checkpoint.change(checkpoint_change, inputs=[ui_checkpoint], show_progress=False)
ui_vae.change(modules_change, inputs=[ui_vae], queue=False, show_progress=False)
return
def find_files_with_extensions(base_path, extensions):
found_files = {}
for root, _, files in os.walk(base_path):
for file in files:
if any(file.endswith(ext) for ext in extensions):
full_path = os.path.join(root, file)
found_files[file] = full_path
return found_files
def refresh_models():
global module_list
shared_items.refresh_checkpoints()
ckpt_list = shared_items.list_checkpoint_tiles(shared.opts.sd_checkpoint_dropdown_use_short)
file_extensions = ['ckpt', 'pt', 'bin', 'safetensors', 'gguf']
module_list.clear()
module_paths = [
os.path.abspath(os.path.join(paths.models_path, "VAE")),
os.path.abspath(os.path.join(paths.models_path, "text_encoder")),
]
if isinstance(shared.cmd_opts.vae_dir, str):
module_paths.append(os.path.abspath(shared.cmd_opts.vae_dir))
if isinstance(shared.cmd_opts.text_encoder_dir, str):
module_paths.append(os.path.abspath(shared.cmd_opts.text_encoder_dir))
for vae_path in module_paths:
vae_files = find_files_with_extensions(vae_path, file_extensions)
module_list.update(vae_files)
return ckpt_list, module_list.keys()
def ui_refresh_memory_management_settings(model_memory, async_loading, pin_shared_memory):
""" Passes precalculated 'model_memory' from "GPU Weights" UI slider (skip redundant calculation) """
refresh_memory_management_settings(
async_loading=async_loading,
pin_shared_memory=pin_shared_memory,
model_memory=model_memory # Use model_memory directly from UI slider value
)
def refresh_memory_management_settings(async_loading=None, inference_memory=None, pin_shared_memory=None, model_memory=None):
# Fallback to defaults if values are not passed
async_loading = async_loading if async_loading is not None else shared.opts.forge_async_loading
inference_memory = inference_memory if inference_memory is not None else shared.opts.forge_inference_memory
pin_shared_memory = pin_shared_memory if pin_shared_memory is not None else shared.opts.forge_pin_shared_memory
# If model_memory is provided, calculate inference memory accordingly, otherwise use inference_memory directly
if model_memory is None:
model_memory = total_vram - inference_memory
else:
inference_memory = total_vram - model_memory
shared.opts.set('forge_async_loading', async_loading)
shared.opts.set('forge_inference_memory', inference_memory)
shared.opts.set('forge_pin_shared_memory', pin_shared_memory)
stream.stream_activated = async_loading == 'Async'
memory_management.current_inference_memory = inference_memory * 1024 * 1024 # Convert MB to bytes
memory_management.PIN_SHARED_MEMORY = pin_shared_memory == 'Shared'
log_dict = dict(
stream=stream.should_use_stream(),
inference_memory=memory_management.minimum_inference_memory() / (1024 * 1024),
pin_shared_memory=memory_management.PIN_SHARED_MEMORY
)
print(f'Environment vars changed: {log_dict}')
if inference_memory < min(512, total_vram * 0.05):
print('------------------')
print(f'[Low VRAM Warning] You just set Forge to use 100% GPU memory ({model_memory:.2f} MB) to load model weights.')
print('[Low VRAM Warning] This means you will have 0% GPU memory (0.00 MB) to do matrix computation. Computations may fallback to CPU or go Out of Memory.')
print('[Low VRAM Warning] In many cases, image generation will be 10x slower.')
print("[Low VRAM Warning] To solve the problem, you can set the 'GPU Weights' (on the top of page) to a lower value.")
print("[Low VRAM Warning] If you cannot find 'GPU Weights', you can click the 'all' option in the 'UI' area on the left-top corner of the webpage.")
print('[Low VRAM Warning] Make sure that you know what you are testing.')
print('------------------')
else:
compute_percentage = (inference_memory / total_vram) * 100.0
print(f'[GPU Setting] You will use {(100 - compute_percentage):.2f}% GPU memory ({model_memory:.2f} MB) to load weights, and use {compute_percentage:.2f}% GPU memory ({inference_memory:.2f} MB) to do matrix computation.')
processing.need_global_unload = True
return
def refresh_model_loading_parameters():
from modules.sd_models import select_checkpoint, model_data
checkpoint_info = select_checkpoint()
unet_storage_dtype, lora_fp16 = forge_unet_storage_dtype_options.get(shared.opts.forge_unet_storage_dtype, (None, False))
dynamic_args['online_lora'] = lora_fp16
model_data.forge_loading_parameters = dict(
checkpoint_info=checkpoint_info,
additional_modules=shared.opts.forge_additional_modules,
unet_storage_dtype=unet_storage_dtype
)
print(f'Model selected: {model_data.forge_loading_parameters}')
print(f'Using online LoRAs in FP16: {lora_fp16}')
processing.need_global_unload = True
return
def checkpoint_change(ckpt_name:str, save=True, refresh=True):
""" checkpoint name can be a number of valid aliases. Returns True if checkpoint changed. """
new_ckpt_info = sd_models.get_closet_checkpoint_match(ckpt_name)
current_ckpt_info = sd_models.get_closet_checkpoint_match(shared.opts.data.get('sd_model_checkpoint', ''))
if new_ckpt_info == current_ckpt_info:
return False
shared.opts.set('sd_model_checkpoint', ckpt_name)
if save:
shared.opts.save(shared.config_filename)
if refresh:
refresh_model_loading_parameters()
return True
def modules_change(module_values:list, save=True, refresh=True) -> bool:
""" module values may be provided as file paths, or just the module names. Returns True if modules changed. """
modules = []
for v in module_values:
module_name = os.path.basename(v) # If the input is a filepath, extract the file name
if module_name in module_list:
modules.append(module_list[module_name])
# skip further processing if value unchanged
if sorted(modules) == sorted(shared.opts.data.get('forge_additional_modules', [])):
return False
shared.opts.set('forge_additional_modules', modules)
if save:
shared.opts.save(shared.config_filename)
if refresh:
refresh_model_loading_parameters()
return True
def get_a1111_ui_component(tab, label):
fields = infotext_utils.paste_fields[tab]['fields']
for f in fields:
if f.label == label or f.api == label:
return f.component
def forge_main_entry():
ui_txt2img_width = get_a1111_ui_component('txt2img', 'Size-1')
ui_txt2img_height = get_a1111_ui_component('txt2img', 'Size-2')
ui_txt2img_cfg = get_a1111_ui_component('txt2img', 'CFG scale')
ui_txt2img_distilled_cfg = get_a1111_ui_component('txt2img', 'Distilled CFG Scale')
ui_txt2img_sampler = get_a1111_ui_component('txt2img', 'sampler_name')
ui_txt2img_scheduler = get_a1111_ui_component('txt2img', 'scheduler')
ui_img2img_width = get_a1111_ui_component('img2img', 'Size-1')
ui_img2img_height = get_a1111_ui_component('img2img', 'Size-2')
ui_img2img_cfg = get_a1111_ui_component('img2img', 'CFG scale')
ui_img2img_distilled_cfg = get_a1111_ui_component('img2img', 'Distilled CFG Scale')
ui_img2img_sampler = get_a1111_ui_component('img2img', 'sampler_name')
ui_img2img_scheduler = get_a1111_ui_component('img2img', 'scheduler')
ui_txt2img_hr_cfg = get_a1111_ui_component('txt2img', 'Hires CFG Scale')
ui_txt2img_hr_distilled_cfg = get_a1111_ui_component('txt2img', 'Hires Distilled CFG Scale')
output_targets = [
ui_vae,
ui_clip_skip,
ui_forge_unet_storage_dtype_options,
ui_forge_async_loading,
ui_forge_pin_shared_memory,
ui_forge_inference_memory,
ui_txt2img_width,
ui_img2img_width,
ui_txt2img_height,
ui_img2img_height,
ui_txt2img_cfg,
ui_img2img_cfg,
ui_txt2img_distilled_cfg,
ui_img2img_distilled_cfg,
ui_txt2img_sampler,
ui_img2img_sampler,
ui_txt2img_scheduler,
ui_img2img_scheduler,
ui_txt2img_hr_cfg,
ui_txt2img_hr_distilled_cfg,
]
ui_forge_preset.change(on_preset_change, inputs=[ui_forge_preset], outputs=output_targets, queue=False, show_progress=False)
ui_forge_preset.change(js="clickLoraRefresh", fn=None, queue=False, show_progress=False)
Context.root_block.load(on_preset_change, inputs=None, outputs=output_targets, queue=False, show_progress=False)
refresh_model_loading_parameters()
return
def on_preset_change(preset=None):
if preset is not None:
shared.opts.set('forge_preset', preset)
shared.opts.save(shared.config_filename)
if shared.opts.forge_preset == 'sd':
return [
gr.update(visible=True), # ui_vae
gr.update(visible=True, value=1), # ui_clip_skip
gr.update(visible=False, value='Automatic'), # ui_forge_unet_storage_dtype_options
gr.update(visible=False, value='Queue'), # ui_forge_async_loading
gr.update(visible=False, value='CPU'), # ui_forge_pin_shared_memory
gr.update(visible=False, value=total_vram - 1024), # ui_forge_inference_memory
gr.update(value=getattr(shared.opts, "sd_t2i_width", 512)), # ui_txt2img_width
gr.update(value=getattr(shared.opts, "sd_i2i_width", 512)), # ui_img2img_width
gr.update(value=getattr(shared.opts, "sd_t2i_height", 640)), # ui_txt2img_height
gr.update(value=getattr(shared.opts, "sd_i2i_height", 512)), # ui_img2img_height
gr.update(value=getattr(shared.opts, "sd_t2i_cfg", 7)), # ui_txt2img_cfg
gr.update(value=getattr(shared.opts, "sd_i2i_cfg", 7)), # ui_img2img_cfg
gr.update(visible=False, value=3.5), # ui_txt2img_distilled_cfg
gr.update(visible=False, value=3.5), # ui_img2img_distilled_cfg
gr.update(value=getattr(shared.opts, "sd_t2i_sampler", 'Euler a')), # ui_txt2img_sampler
gr.update(value=getattr(shared.opts, "sd_i2i_sampler", 'Euler a')), # ui_img2img_sampler
gr.update(value=getattr(shared.opts, "sd_t2i_scheduler", 'Automatic')), # ui_txt2img_scheduler
gr.update(value=getattr(shared.opts, "sd_i2i_scheduler", 'Automatic')), # ui_img2img_scheduler
gr.update(visible=True, value=getattr(shared.opts, "sd_t2i_hr_cfg", 7.0)), # ui_txt2img_hr_cfg
gr.update(visible=False, value=3.5), # ui_txt2img_hr_distilled_cfg
]
if shared.opts.forge_preset == 'xl':
model_mem = getattr(shared.opts, "xl_GPU_MB", total_vram - 1024)
if model_mem < 0 or model_mem > total_vram:
model_mem = total_vram - 1024
return [
gr.update(visible=True), # ui_vae
gr.update(visible=False, value=1), # ui_clip_skip
gr.update(visible=True, value='Automatic'), # ui_forge_unet_storage_dtype_options
gr.update(visible=False, value='Queue'), # ui_forge_async_loading
gr.update(visible=False, value='CPU'), # ui_forge_pin_shared_memory
gr.update(visible=True, value=model_mem), # ui_forge_inference_memory
gr.update(value=getattr(shared.opts, "xl_t2i_width", 896)), # ui_txt2img_width
gr.update(value=getattr(shared.opts, "xl_i2i_width", 1024)), # ui_img2img_width
gr.update(value=getattr(shared.opts, "xl_t2i_height", 1152)), # ui_txt2img_height
gr.update(value=getattr(shared.opts, "xl_i2i_height", 1024)), # ui_img2img_height
gr.update(value=getattr(shared.opts, "xl_t2i_cfg", 5)), # ui_txt2img_cfg
gr.update(value=getattr(shared.opts, "xl_i2i_cfg", 5)), # ui_img2img_cfg
gr.update(visible=False, value=3.5), # ui_txt2img_distilled_cfg
gr.update(visible=False, value=3.5), # ui_img2img_distilled_cfg
gr.update(value=getattr(shared.opts, "xl_t2i_sampler", 'Euler a')), # ui_txt2img_sampler
gr.update(value=getattr(shared.opts, "xl_i2i_sampler", 'Euler a')), # ui_img2img_sampler
gr.update(value=getattr(shared.opts, "xl_t2i_scheduler", 'Automatic')), # ui_txt2img_scheduler
gr.update(value=getattr(shared.opts, "xl_i2i_scheduler", 'Automatic')), # ui_img2img_scheduler
gr.update(visible=True, value=getattr(shared.opts, "xl_t2i_hr_cfg", 5.0)), # ui_txt2img_hr_cfg
gr.update(visible=False, value=3.5), # ui_txt2img_hr_distilled_cfg
]
if shared.opts.forge_preset == 'flux':
model_mem = getattr(shared.opts, "flux_GPU_MB", total_vram - 1024)
if model_mem < 0 or model_mem > total_vram:
model_mem = total_vram - 1024
return [
gr.update(visible=True), # ui_vae
gr.update(visible=False, value=1), # ui_clip_skip
gr.update(visible=True, value='Automatic'), # ui_forge_unet_storage_dtype_options
gr.update(visible=True, value='Queue'), # ui_forge_async_loading
gr.update(visible=True, value='CPU'), # ui_forge_pin_shared_memory
gr.update(visible=True, value=model_mem), # ui_forge_inference_memory
gr.update(value=getattr(shared.opts, "flux_t2i_width", 896)), # ui_txt2img_width
gr.update(value=getattr(shared.opts, "flux_i2i_width", 1024)), # ui_img2img_width
gr.update(value=getattr(shared.opts, "flux_t2i_height", 1152)), # ui_txt2img_height
gr.update(value=getattr(shared.opts, "flux_i2i_height", 1024)), # ui_img2img_height
gr.update(value=getattr(shared.opts, "flux_t2i_cfg", 1)), # ui_txt2img_cfg
gr.update(value=getattr(shared.opts, "flux_i2i_cfg", 1)), # ui_img2img_cfg
gr.update(visible=True, value=getattr(shared.opts, "flux_t2i_d_cfg", 3.5)), # ui_txt2img_distilled_cfg
gr.update(visible=True, value=getattr(shared.opts, "flux_i2i_d_cfg", 3.5)), # ui_img2img_distilled_cfg
gr.update(value=getattr(shared.opts, "flux_t2i_sampler", 'Euler')), # ui_txt2img_sampler
gr.update(value=getattr(shared.opts, "flux_i2i_sampler", 'Euler')), # ui_img2img_sampler
gr.update(value=getattr(shared.opts, "flux_t2i_scheduler", 'Simple')), # ui_txt2img_scheduler
gr.update(value=getattr(shared.opts, "flux_i2i_scheduler", 'Simple')), # ui_img2img_scheduler
gr.update(visible=True, value=getattr(shared.opts, "flux_t2i_hr_cfg", 1.0)), # ui_txt2img_hr_cfg
gr.update(visible=True, value=getattr(shared.opts, "flux_t2i_hr_d_cfg", 3.5)), # ui_txt2img_hr_distilled_cfg
]
loadsave = ui_loadsave.UiLoadsave(cmd_opts.ui_config_file)
ui_settings_from_file = loadsave.ui_settings.copy()
return [
gr.update(visible=True), # ui_vae
gr.update(visible=True, value=1), # ui_clip_skip
gr.update(visible=True, value='Automatic'), # ui_forge_unet_storage_dtype_options
gr.update(visible=True, value='Queue'), # ui_forge_async_loading
gr.update(visible=True, value='CPU'), # ui_forge_pin_shared_memory
gr.update(visible=True, value=total_vram - 1024), # ui_forge_inference_memory
gr.update(value=ui_settings_from_file['txt2img/Width/value']), # ui_txt2img_width
gr.update(value=ui_settings_from_file['img2img/Width/value']), # ui_img2img_width
gr.update(value=ui_settings_from_file['txt2img/Height/value']), # ui_txt2img_height
gr.update(value=ui_settings_from_file['img2img/Height/value']), # ui_img2img_height
gr.update(value=ui_settings_from_file['txt2img/CFG Scale/value']), # ui_txt2img_cfg
gr.update(value=ui_settings_from_file['img2img/CFG Scale/value']), # ui_img2img_cfg
gr.update(visible=True, value=ui_settings_from_file['txt2img/Distilled CFG Scale/value']), # ui_txt2img_distilled_cfg
gr.update(visible=True, value=ui_settings_from_file['img2img/Distilled CFG Scale/value']), # ui_img2img_distilled_cfg
gr.update(value=ui_settings_from_file['customscript/sampler.py/txt2img/Sampling method/value']), # ui_txt2img_sampler
gr.update(value=ui_settings_from_file['customscript/sampler.py/img2img/Sampling method/value']), # ui_img2img_sampler
gr.update(value=ui_settings_from_file['customscript/sampler.py/txt2img/Schedule type/value']), # ui_txt2img_scheduler
gr.update(value=ui_settings_from_file['customscript/sampler.py/img2img/Schedule type/value']), # ui_img2img_scheduler
gr.update(visible=True, value=ui_settings_from_file['txt2img/Hires CFG Scale/value']), # ui_txt2img_hr_cfg
gr.update(visible=True, value=ui_settings_from_file['txt2img/Hires Distilled CFG Scale/value']), # ui_txt2img_hr_distilled_cfg
]
shared.options_templates.update(shared.options_section(('ui_sd', "UI defaults 'sd'", "ui"), {
"sd_t2i_width": shared.OptionInfo(512, "txt2img width", gr.Slider, {"minimum": 64, "maximum": 2048, "step": 8}),
"sd_t2i_height": shared.OptionInfo(640, "txt2img height", gr.Slider, {"minimum": 64, "maximum": 2048, "step": 8}),
"sd_t2i_cfg": shared.OptionInfo(7, "txt2img CFG", gr.Slider, {"minimum": 1, "maximum": 30, "step": 0.1}),
"sd_t2i_hr_cfg": shared.OptionInfo(7, "txt2img HiRes CFG", gr.Slider, {"minimum": 1, "maximum": 30, "step": 0.1}),
"sd_i2i_width": shared.OptionInfo(512, "img2img width", gr.Slider, {"minimum": 64, "maximum": 2048, "step": 8}),
"sd_i2i_height": shared.OptionInfo(512, "img2img height", gr.Slider, {"minimum": 64, "maximum": 2048, "step": 8}),
"sd_i2i_cfg": shared.OptionInfo(7, "img2img CFG", gr.Slider, {"minimum": 1, "maximum": 30, "step": 0.1}),
}))
shared.options_templates.update(shared.options_section(('ui_xl', "UI defaults 'xl'", "ui"), {
"xl_t2i_width": shared.OptionInfo(896, "txt2img width", gr.Slider, {"minimum": 64, "maximum": 2048, "step": 8}),
"xl_t2i_height": shared.OptionInfo(1152, "txt2img height", gr.Slider, {"minimum": 64, "maximum": 2048, "step": 8}),
"xl_t2i_cfg": shared.OptionInfo(5, "txt2img CFG", gr.Slider, {"minimum": 1, "maximum": 30, "step": 0.1}),
"xl_t2i_hr_cfg": shared.OptionInfo(5, "txt2img HiRes CFG", gr.Slider, {"minimum": 1, "maximum": 30, "step": 0.1}),
"xl_i2i_width": shared.OptionInfo(1024, "img2img width", gr.Slider, {"minimum": 64, "maximum": 2048, "step": 8}),
"xl_i2i_height": shared.OptionInfo(1024, "img2img height", gr.Slider, {"minimum": 64, "maximum": 2048, "step": 8}),
"xl_i2i_cfg": shared.OptionInfo(5, "img2img CFG", gr.Slider, {"minimum": 1, "maximum": 30, "step": 0.1}),
"xl_GPU_MB": shared.OptionInfo(total_vram - 1024, "GPU Weights (MB)", gr.Slider, {"minimum": 0, "maximum": total_vram, "step": 1}),
}))
shared.options_templates.update(shared.options_section(('ui_flux', "UI defaults 'flux'", "ui"), {
"flux_t2i_width": shared.OptionInfo(896, "txt2img width", gr.Slider, {"minimum": 64, "maximum": 2048, "step": 8}),
"flux_t2i_height": shared.OptionInfo(1152, "txt2img height", gr.Slider, {"minimum": 64, "maximum": 2048, "step": 8}),
"flux_t2i_cfg": shared.OptionInfo(1, "txt2img CFG", gr.Slider, {"minimum": 1, "maximum": 30, "step": 0.1}),
"flux_t2i_hr_cfg": shared.OptionInfo(1, "txt2img HiRes CFG", gr.Slider, {"minimum": 1, "maximum": 30, "step": 0.1}),
"flux_t2i_d_cfg": shared.OptionInfo(3.5, "txt2img Distilled CFG", gr.Slider, {"minimum": 0, "maximum": 30, "step": 0.1}),
"flux_t2i_hr_d_cfg": shared.OptionInfo(3.5, "txt2img Distilled HiRes CFG", gr.Slider, {"minimum": 0, "maximum": 30, "step": 0.1}),
"flux_i2i_width": shared.OptionInfo(1024, "img2img width", gr.Slider, {"minimum": 64, "maximum": 2048, "step": 8}),
"flux_i2i_height": shared.OptionInfo(1024, "img2img height", gr.Slider, {"minimum": 64, "maximum": 2048, "step": 8}),
"flux_i2i_cfg": shared.OptionInfo(1, "img2img CFG", gr.Slider, {"minimum": 1, "maximum": 30, "step": 0.1}),
"flux_i2i_d_cfg": shared.OptionInfo(3.5, "img2img Distilled CFG", gr.Slider, {"minimum": 0, "maximum": 30, "step": 0.1}),
"flux_GPU_MB": shared.OptionInfo(total_vram - 1024, "GPU Weights (MB)",gr.Slider, {"minimum": 0, "maximum": total_vram, "step": 1}),
}))