import datetime import glob import html import os import inspect from contextlib import closing import torch import tqdm from einops import rearrange, repeat from backend.nn.unet import default from modules import devices, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors from modules.textual_inversion import textual_inversion from torch import einsum from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_ from collections import deque from statistics import stdev, mean optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"} class HypernetworkModule(torch.nn.Module): activation_dict = { "linear": torch.nn.Identity, "relu": torch.nn.ReLU, "leakyrelu": torch.nn.LeakyReLU, "elu": torch.nn.ELU, "swish": torch.nn.Hardswish, "tanh": torch.nn.Tanh, "sigmoid": torch.nn.Sigmoid, } activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'}) def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal', add_layer_norm=False, activate_output=False, dropout_structure=None): super().__init__() self.multiplier = 1.0 assert layer_structure is not None, "layer_structure must not be None" assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!" assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!" linears = [] for i in range(len(layer_structure) - 1): # Add a fully-connected layer linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) # Add an activation func except last layer if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output): pass elif activation_func in self.activation_dict: linears.append(self.activation_dict[activation_func]()) else: raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}') # Add layer normalization if add_layer_norm: linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) # Everything should be now parsed into dropout structure, and applied here. # Since we only have dropouts after layers, dropout structure should start with 0 and end with 0. if dropout_structure is not None and dropout_structure[i+1] > 0: assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!" linears.append(torch.nn.Dropout(p=dropout_structure[i+1])) # Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0]. self.linear = torch.nn.Sequential(*linears) if state_dict is not None: self.fix_old_state_dict(state_dict) self.load_state_dict(state_dict) else: for layer in self.linear: if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm: w, b = layer.weight.data, layer.bias.data if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm: normal_(w, mean=0.0, std=0.01) normal_(b, mean=0.0, std=0) elif weight_init == 'XavierUniform': xavier_uniform_(w) zeros_(b) elif weight_init == 'XavierNormal': xavier_normal_(w) zeros_(b) elif weight_init == 'KaimingUniform': kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu') zeros_(b) elif weight_init == 'KaimingNormal': kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu') zeros_(b) else: raise KeyError(f"Key {weight_init} is not defined as initialization!") devices.torch_npu_set_device() self.to(devices.device) def fix_old_state_dict(self, state_dict): changes = { 'linear1.bias': 'linear.0.bias', 'linear1.weight': 'linear.0.weight', 'linear2.bias': 'linear.1.bias', 'linear2.weight': 'linear.1.weight', } for fr, to in changes.items(): x = state_dict.get(fr, None) if x is None: continue del state_dict[fr] state_dict[to] = x def forward(self, x): return x + self.linear(x) * (self.multiplier if not self.training else 1) def trainables(self): layer_structure = [] for layer in self.linear: if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm: layer_structure += [layer.weight, layer.bias] return layer_structure #param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check. def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout): if layer_structure is None: layer_structure = [1, 2, 1] if not use_dropout: return [0] * len(layer_structure) dropout_values = [0] dropout_values.extend([0.3] * (len(layer_structure) - 3)) if last_layer_dropout: dropout_values.append(0.3) else: dropout_values.append(0) dropout_values.append(0) return dropout_values class Hypernetwork: filename = None name = None def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs): self.filename = None self.name = name self.layers = {} self.step = 0 self.sd_checkpoint = None self.sd_checkpoint_name = None self.layer_structure = layer_structure self.activation_func = activation_func self.weight_init = weight_init self.add_layer_norm = add_layer_norm self.use_dropout = use_dropout self.activate_output = activate_output self.last_layer_dropout = kwargs.get('last_layer_dropout', True) self.dropout_structure = kwargs.get('dropout_structure', None) if self.dropout_structure is None: self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout) self.optimizer_name = None self.optimizer_state_dict = None self.optional_info = None for size in enable_sizes or []: self.layers[size] = ( HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure), HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure), ) self.eval() def weights(self): res = [] for layers in self.layers.values(): for layer in layers: res += layer.parameters() return res def train(self, mode=True): for layers in self.layers.values(): for layer in layers: layer.train(mode=mode) for param in layer.parameters(): param.requires_grad = mode def to(self, device): for layers in self.layers.values(): for layer in layers: layer.to(device) return self def set_multiplier(self, multiplier): for layers in self.layers.values(): for layer in layers: layer.multiplier = multiplier return self def eval(self): for layers in self.layers.values(): for layer in layers: layer.eval() for param in layer.parameters(): param.requires_grad = False def save(self, filename): state_dict = {} optimizer_saved_dict = {} for k, v in self.layers.items(): state_dict[k] = (v[0].state_dict(), v[1].state_dict()) state_dict['step'] = self.step state_dict['name'] = self.name state_dict['layer_structure'] = self.layer_structure state_dict['activation_func'] = self.activation_func state_dict['is_layer_norm'] = self.add_layer_norm state_dict['weight_initialization'] = self.weight_init state_dict['sd_checkpoint'] = self.sd_checkpoint state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name state_dict['activate_output'] = self.activate_output state_dict['use_dropout'] = self.use_dropout state_dict['dropout_structure'] = self.dropout_structure state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout state_dict['optional_info'] = self.optional_info if self.optional_info else None if self.optimizer_name is not None: optimizer_saved_dict['optimizer_name'] = self.optimizer_name torch.save(state_dict, filename) if shared.opts.save_optimizer_state and self.optimizer_state_dict: optimizer_saved_dict['hash'] = self.shorthash() optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict torch.save(optimizer_saved_dict, filename + '.optim') def load(self, filename): self.filename = filename if self.name is None: self.name = os.path.splitext(os.path.basename(filename))[0] state_dict = torch.load(filename, map_location='cpu') self.layer_structure = state_dict.get('layer_structure', [1, 2, 1]) self.optional_info = state_dict.get('optional_info', None) self.activation_func = state_dict.get('activation_func', None) self.weight_init = state_dict.get('weight_initialization', 'Normal') self.add_layer_norm = state_dict.get('is_layer_norm', False) self.dropout_structure = state_dict.get('dropout_structure', None) self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False) self.activate_output = state_dict.get('activate_output', True) self.last_layer_dropout = state_dict.get('last_layer_dropout', False) # Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0. if self.dropout_structure is None: self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout) if shared.opts.print_hypernet_extra: if self.optional_info is not None: print(f" INFO:\n {self.optional_info}\n") print(f" Layer structure: {self.layer_structure}") print(f" Activation function: {self.activation_func}") print(f" Weight initialization: {self.weight_init}") print(f" Layer norm: {self.add_layer_norm}") print(f" Dropout usage: {self.use_dropout}" ) print(f" Activate last layer: {self.activate_output}") print(f" Dropout structure: {self.dropout_structure}") optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {} if self.shorthash() == optimizer_saved_dict.get('hash', None): self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) else: self.optimizer_state_dict = None if self.optimizer_state_dict: self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW') if shared.opts.print_hypernet_extra: print("Loaded existing optimizer from checkpoint") print(f"Optimizer name is {self.optimizer_name}") else: self.optimizer_name = "AdamW" if shared.opts.print_hypernet_extra: print("No saved optimizer exists in checkpoint") for size, sd in state_dict.items(): if type(size) == int: self.layers[size] = ( HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.activate_output, self.dropout_structure), HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.activate_output, self.dropout_structure), ) self.name = state_dict.get('name', self.name) self.step = state_dict.get('step', 0) self.sd_checkpoint = state_dict.get('sd_checkpoint', None) self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) self.eval() def shorthash(self): sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}') return sha256[0:10] if sha256 else None def list_hypernetworks(path): res = {} for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True), key=str.lower): name = os.path.splitext(os.path.basename(filename))[0] # Prevent a hypothetical "None.pt" from being listed. if name != "None": res[name] = filename return res def load_hypernetwork(name): path = shared.hypernetworks.get(name, None) if path is None: return None try: hypernetwork = Hypernetwork() hypernetwork.load(path) return hypernetwork except Exception: errors.report(f"Error loading hypernetwork {path}", exc_info=True) return None def load_hypernetworks(names, multipliers=None): already_loaded = {} for hypernetwork in shared.loaded_hypernetworks: if hypernetwork.name in names: already_loaded[hypernetwork.name] = hypernetwork shared.loaded_hypernetworks.clear() for i, name in enumerate(names): hypernetwork = already_loaded.get(name, None) if hypernetwork is None: hypernetwork = load_hypernetwork(name) if hypernetwork is None: continue hypernetwork.set_multiplier(multipliers[i] if multipliers else 1.0) shared.loaded_hypernetworks.append(hypernetwork) def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None): hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None) if hypernetwork_layers is None: return context_k, context_v if layer is not None: layer.hyper_k = hypernetwork_layers[0] layer.hyper_v = hypernetwork_layers[1] context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k))) context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v))) return context_k, context_v def apply_hypernetworks(hypernetworks, context, layer=None): context_k = context context_v = context for hypernetwork in hypernetworks: context_k, context_v = apply_single_hypernetwork(hypernetwork, context_k, context_v, layer) return context_k, context_v def attention_CrossAttention_forward(self, x, context=None, mask=None, **kwargs): h = self.heads q = self.to_q(x) context = default(context, x) context_k, context_v = apply_hypernetworks(shared.loaded_hypernetworks, context, self) k = self.to_k(context_k) v = self.to_v(context_v) q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale if mask is not None: mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) return self.to_out(out) def stack_conds(conds): if len(conds) == 1: return torch.stack(conds) # same as in reconstruct_multicond_batch token_count = max([x.shape[0] for x in conds]) for i in range(len(conds)): if conds[i].shape[0] != token_count: last_vector = conds[i][-1:] last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1]) conds[i] = torch.vstack([conds[i], last_vector_repeated]) return torch.stack(conds) def statistics(data): if len(data) < 2: std = 0 else: std = stdev(data) total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})" recent_data = data[-32:] if len(recent_data) < 2: std = 0 else: std = stdev(recent_data) recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})" return total_information, recent_information # # def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None): # # Remove illegal characters from name. # name = "".join( x for x in name if (x.isalnum() or x in "._- ")) # assert name, "Name cannot be empty!" # # fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") # if not overwrite_old: # assert not os.path.exists(fn), f"file {fn} already exists" # # if type(layer_structure) == str: # layer_structure = [float(x.strip()) for x in layer_structure.split(",")] # # if use_dropout and dropout_structure and type(dropout_structure) == str: # dropout_structure = [float(x.strip()) for x in dropout_structure.split(",")] # else: # dropout_structure = [0] * len(layer_structure) # # hypernet = modules.hypernetworks.hypernetwork.Hypernetwork( # name=name, # enable_sizes=[int(x) for x in enable_sizes], # layer_structure=layer_structure, # activation_func=activation_func, # weight_init=weight_init, # add_layer_norm=add_layer_norm, # use_dropout=use_dropout, # dropout_structure=dropout_structure # ) # hypernet.save(fn) # # shared.reload_hypernetworks() # # # def train_hypernetwork(id_task, hypernetwork_name: str, learn_rate: float, batch_size: int, gradient_step: int, data_root: str, log_directory: str, training_width: int, training_height: int, varsize: bool, steps: int, clip_grad_mode: str, clip_grad_value: float, shuffle_tags: bool, tag_drop_out: bool, latent_sampling_method: str, use_weight: bool, create_image_every: int, save_hypernetwork_every: int, template_filename: str, preview_from_txt2img: bool, preview_prompt: str, preview_negative_prompt: str, preview_steps: int, preview_sampler_name: str, preview_cfg_scale: float, preview_seed: int, preview_width: int, preview_height: int): # from modules import images, processing # # save_hypernetwork_every = save_hypernetwork_every or 0 # create_image_every = create_image_every or 0 # template_file = textual_inversion.textual_inversion_templates.get(template_filename, None) # textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork") # template_file = template_file.path # # path = shared.hypernetworks.get(hypernetwork_name, None) # hypernetwork = Hypernetwork() # hypernetwork.load(path) # shared.loaded_hypernetworks = [hypernetwork] # # shared.state.job = "train-hypernetwork" # shared.state.textinfo = "Initializing hypernetwork training..." # shared.state.job_count = steps # # hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0] # filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') # # log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name) # unload = shared.opts.unload_models_when_training # # if save_hypernetwork_every > 0: # hypernetwork_dir = os.path.join(log_directory, "hypernetworks") # os.makedirs(hypernetwork_dir, exist_ok=True) # else: # hypernetwork_dir = None # # if create_image_every > 0: # images_dir = os.path.join(log_directory, "images") # os.makedirs(images_dir, exist_ok=True) # else: # images_dir = None # # checkpoint = sd_models.select_checkpoint() # # initial_step = hypernetwork.step or 0 # if initial_step >= steps: # shared.state.textinfo = "Model has already been trained beyond specified max steps" # return hypernetwork, filename # # scheduler = LearnRateScheduler(learn_rate, steps, initial_step) # # clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None # if clip_grad: # clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False) # # if shared.opts.training_enable_tensorboard: # tensorboard_writer = textual_inversion.tensorboard_setup(log_directory) # # # dataset loading may take a while, so input validations and early returns should be done before this # shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." # # pin_memory = shared.opts.pin_memory # # ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight) # # if shared.opts.save_training_settings_to_txt: # saved_params = dict( # model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), # **{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]} # ) # saving_settings.save_settings_to_file(log_directory, {**saved_params, **locals()}) # # latent_sampling_method = ds.latent_sampling_method # # dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory) # # old_parallel_processing_allowed = shared.parallel_processing_allowed # # if unload: # shared.parallel_processing_allowed = False # shared.sd_model.cond_stage_model.to(devices.cpu) # shared.sd_model.first_stage_model.to(devices.cpu) # # weights = hypernetwork.weights() # hypernetwork.train() # # # Here we use optimizer from saved HN, or we can specify as UI option. # if hypernetwork.optimizer_name in optimizer_dict: # optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate) # optimizer_name = hypernetwork.optimizer_name # else: # print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!") # optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate) # optimizer_name = 'AdamW' # # if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer. # try: # optimizer.load_state_dict(hypernetwork.optimizer_state_dict) # except RuntimeError as e: # print("Cannot resume from saved optimizer!") # print(e) # # scaler = torch.cuda.amp.GradScaler() # # batch_size = ds.batch_size # gradient_step = ds.gradient_step # # n steps = batch_size * gradient_step * n image processed # steps_per_epoch = len(ds) // batch_size // gradient_step # max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step # loss_step = 0 # _loss_step = 0 #internal # # size = len(ds.indexes) # # loss_dict = defaultdict(lambda : deque(maxlen = 1024)) # loss_logging = deque(maxlen=len(ds) * 3) # this should be configurable parameter, this is 3 * epoch(dataset size) # # losses = torch.zeros((size,)) # # previous_mean_losses = [0] # # previous_mean_loss = 0 # # print("Mean loss of {} elements".format(size)) # # steps_without_grad = 0 # # last_saved_file = "" # last_saved_image = "" # forced_filename = "" # # pbar = tqdm.tqdm(total=steps - initial_step) # try: # sd_hijack_checkpoint.add() # # for _ in range((steps-initial_step) * gradient_step): # if scheduler.finished: # break # if shared.state.interrupted: # break # for j, batch in enumerate(dl): # # works as a drop_last=True for gradient accumulation # if j == max_steps_per_epoch: # break # scheduler.apply(optimizer, hypernetwork.step) # if scheduler.finished: # break # if shared.state.interrupted: # break # # if clip_grad: # clip_grad_sched.step(hypernetwork.step) # # with devices.autocast(): # x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) # if use_weight: # w = batch.weight.to(devices.device, non_blocking=pin_memory) # if tag_drop_out != 0 or shuffle_tags: # shared.sd_model.cond_stage_model.to(devices.device) # c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory) # shared.sd_model.cond_stage_model.to(devices.cpu) # else: # c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory) # if use_weight: # loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step # del w # else: # loss = shared.sd_model.forward(x, c)[0] / gradient_step # del x # del c # # _loss_step += loss.item() # scaler.scale(loss).backward() # # # go back until we reach gradient accumulation steps # if (j + 1) % gradient_step != 0: # continue # loss_logging.append(_loss_step) # if clip_grad: # clip_grad(weights, clip_grad_sched.learn_rate) # # scaler.step(optimizer) # scaler.update() # hypernetwork.step += 1 # pbar.update() # optimizer.zero_grad(set_to_none=True) # loss_step = _loss_step # _loss_step = 0 # # steps_done = hypernetwork.step + 1 # # epoch_num = hypernetwork.step // steps_per_epoch # epoch_step = hypernetwork.step % steps_per_epoch # # description = f"Training hypernetwork [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}" # pbar.set_description(description) # if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0: # # Before saving, change name to match current checkpoint. # hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}' # last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt') # hypernetwork.optimizer_name = optimizer_name # if shared.opts.save_optimizer_state: # hypernetwork.optimizer_state_dict = optimizer.state_dict() # save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file) # hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory. # # # # if shared.opts.training_enable_tensorboard: # epoch_num = hypernetwork.step // len(ds) # epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1 # mean_loss = sum(loss_logging) / len(loss_logging) # textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num) # # textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, { # "loss": f"{loss_step:.7f}", # "learn_rate": scheduler.learn_rate # }) # # if images_dir is not None and steps_done % create_image_every == 0: # forced_filename = f'{hypernetwork_name}-{steps_done}' # last_saved_image = os.path.join(images_dir, forced_filename) # hypernetwork.eval() # rng_state = torch.get_rng_state() # cuda_rng_state = None # if torch.cuda.is_available(): # cuda_rng_state = torch.cuda.get_rng_state_all() # shared.sd_model.cond_stage_model.to(devices.device) # shared.sd_model.first_stage_model.to(devices.device) # # p = processing.StableDiffusionProcessingTxt2Img( # sd_model=shared.sd_model, # do_not_save_grid=True, # do_not_save_samples=True, # ) # # p.disable_extra_networks = True # # if preview_from_txt2img: # p.prompt = preview_prompt # p.negative_prompt = preview_negative_prompt # p.steps = preview_steps # p.sampler_name = sd_samplers.samplers_map[preview_sampler_name.lower()] # p.cfg_scale = preview_cfg_scale # p.seed = preview_seed # p.width = preview_width # p.height = preview_height # else: # p.prompt = batch.cond_text[0] # p.steps = 20 # p.width = training_width # p.height = training_height # # preview_text = p.prompt # # with closing(p): # processed = processing.process_images(p) # image = processed.images[0] if len(processed.images) > 0 else None # # if unload: # shared.sd_model.cond_stage_model.to(devices.cpu) # shared.sd_model.first_stage_model.to(devices.cpu) # torch.set_rng_state(rng_state) # if torch.cuda.is_available(): # torch.cuda.set_rng_state_all(cuda_rng_state) # hypernetwork.train() # if image is not None: # shared.state.assign_current_image(image) # if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images: # textual_inversion.tensorboard_add_image(tensorboard_writer, # f"Validation at epoch {epoch_num}", image, # hypernetwork.step) # last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) # last_saved_image += f", prompt: {preview_text}" # # shared.state.job_no = hypernetwork.step # # shared.state.textinfo = f""" #

# Loss: {loss_step:.7f}
# Step: {steps_done}
# Last prompt: {html.escape(batch.cond_text[0])}
# Last saved hypernetwork: {html.escape(last_saved_file)}
# Last saved image: {html.escape(last_saved_image)}
#

# """ # except Exception: # errors.report("Exception in training hypernetwork", exc_info=True) # finally: # pbar.leave = False # pbar.close() # hypernetwork.eval() # sd_hijack_checkpoint.remove() # # # # filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') # hypernetwork.optimizer_name = optimizer_name # if shared.opts.save_optimizer_state: # hypernetwork.optimizer_state_dict = optimizer.state_dict() # save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename) # # del optimizer # hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory. # shared.sd_model.cond_stage_model.to(devices.device) # shared.sd_model.first_stage_model.to(devices.device) # shared.parallel_processing_allowed = old_parallel_processing_allowed # # return hypernetwork, filename # # def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename): # old_hypernetwork_name = hypernetwork.name # old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None # old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None # try: # hypernetwork.sd_checkpoint = checkpoint.shorthash # hypernetwork.sd_checkpoint_name = checkpoint.model_name # hypernetwork.name = hypernetwork_name # hypernetwork.save(filename) # except: # hypernetwork.sd_checkpoint = old_sd_checkpoint # hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name # hypernetwork.name = old_hypernetwork_name # raise