import math import torch from collections import namedtuple from backend.text_processing import parsing, emphasis from backend.text_processing.textual_inversion import EmbeddingDatabase from backend import memory_management from modules.shared import opts PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding']) last_extra_generation_params = {} class PromptChunk: def __init__(self): self.tokens = [] self.multipliers = [] self.fixes = [] class CLIPEmbeddingForTextualInversion(torch.nn.Module): def __init__(self, wrapped, embeddings, textual_inversion_key='clip_l'): super().__init__() self.wrapped = wrapped self.embeddings = embeddings self.textual_inversion_key = textual_inversion_key self.weight = self.wrapped.weight def forward(self, input_ids): batch_fixes = self.embeddings.fixes self.embeddings.fixes = None inputs_embeds = self.wrapped(input_ids) if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0: return inputs_embeds vecs = [] for fixes, tensor in zip(batch_fixes, inputs_embeds): for offset, embedding in fixes: emb = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec emb = emb.to(inputs_embeds) emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0]) tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]).to(dtype=inputs_embeds.dtype) vecs.append(tensor) return torch.stack(vecs) class ClassicTextProcessingEngine: def __init__( self, text_encoder, tokenizer, chunk_length=75, embedding_dir=None, embedding_key='clip_l', embedding_expected_shape=768, emphasis_name="Original", text_projection=False, minimal_clip_skip=1, clip_skip=1, return_pooled=False, final_layer_norm=True ): super().__init__() self.embeddings = EmbeddingDatabase(tokenizer, embedding_expected_shape) if isinstance(embedding_dir, str): self.embeddings.add_embedding_dir(embedding_dir) self.embeddings.load_textual_inversion_embeddings() self.embedding_key = embedding_key self.text_encoder = text_encoder self.tokenizer = tokenizer self.emphasis = emphasis.get_current_option(opts.emphasis)() self.text_projection = text_projection self.minimal_clip_skip = minimal_clip_skip self.clip_skip = clip_skip self.return_pooled = return_pooled self.final_layer_norm = final_layer_norm self.chunk_length = chunk_length self.id_start = self.tokenizer.bos_token_id self.id_end = self.tokenizer.eos_token_id self.id_pad = self.tokenizer.pad_token_id model_embeddings = text_encoder.transformer.text_model.embeddings model_embeddings.token_embedding = CLIPEmbeddingForTextualInversion(model_embeddings.token_embedding, self.embeddings, textual_inversion_key=embedding_key) vocab = self.tokenizer.get_vocab() self.comma_token = vocab.get(',', None) self.token_mults = {} tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k] for text, ident in tokens_with_parens: mult = 1.0 for c in text: if c == '[': mult /= 1.1 if c == ']': mult *= 1.1 if c == '(': mult *= 1.1 if c == ')': mult /= 1.1 if mult != 1.0: self.token_mults[ident] = mult def empty_chunk(self): chunk = PromptChunk() chunk.tokens = [self.id_start] + [self.id_end] * (self.chunk_length + 1) chunk.multipliers = [1.0] * (self.chunk_length + 2) return chunk def get_target_prompt_token_count(self, token_count): return math.ceil(max(token_count, 1) / self.chunk_length) * self.chunk_length def tokenize(self, texts): tokenized = self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] return tokenized def encode_with_transformers(self, tokens): target_device = memory_management.text_encoder_device() self.text_encoder.transformer.text_model.embeddings.position_ids = self.text_encoder.transformer.text_model.embeddings.position_ids.to(device=target_device) self.text_encoder.transformer.text_model.embeddings.position_embedding = self.text_encoder.transformer.text_model.embeddings.position_embedding.to(dtype=torch.float32) self.text_encoder.transformer.text_model.embeddings.token_embedding = self.text_encoder.transformer.text_model.embeddings.token_embedding.to(dtype=torch.float32) tokens = tokens.to(target_device) outputs = self.text_encoder.transformer(tokens, output_hidden_states=True) layer_id = - max(self.clip_skip, self.minimal_clip_skip) z = outputs.hidden_states[layer_id] if self.final_layer_norm: z = self.text_encoder.transformer.text_model.final_layer_norm(z) if self.return_pooled: pooled_output = outputs.pooler_output if self.text_projection: pooled_output = self.text_encoder.transformer.text_projection(pooled_output) z.pooled = pooled_output return z def tokenize_line(self, line): parsed = parsing.parse_prompt_attention(line, self.emphasis.name) tokenized = self.tokenize([text for text, _ in parsed]) chunks = [] chunk = PromptChunk() token_count = 0 last_comma = -1 def next_chunk(is_last=False): nonlocal token_count nonlocal last_comma nonlocal chunk if is_last: token_count += len(chunk.tokens) else: token_count += self.chunk_length to_add = self.chunk_length - len(chunk.tokens) if to_add > 0: chunk.tokens += [self.id_end] * to_add chunk.multipliers += [1.0] * to_add chunk.tokens = [self.id_start] + chunk.tokens + [self.id_end] chunk.multipliers = [1.0] + chunk.multipliers + [1.0] last_comma = -1 chunks.append(chunk) chunk = PromptChunk() for tokens, (text, weight) in zip(tokenized, parsed): if text == 'BREAK' and weight == -1: next_chunk() continue position = 0 while position < len(tokens): token = tokens[position] comma_padding_backtrack = 20 if token == self.comma_token: last_comma = len(chunk.tokens) elif comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= comma_padding_backtrack: break_location = last_comma + 1 reloc_tokens = chunk.tokens[break_location:] reloc_mults = chunk.multipliers[break_location:] chunk.tokens = chunk.tokens[:break_location] chunk.multipliers = chunk.multipliers[:break_location] next_chunk() chunk.tokens = reloc_tokens chunk.multipliers = reloc_mults if len(chunk.tokens) == self.chunk_length: next_chunk() embedding, embedding_length_in_tokens = self.embeddings.find_embedding_at_position(tokens, position) if embedding is None: chunk.tokens.append(token) chunk.multipliers.append(weight) position += 1 continue emb_len = int(embedding.vectors) if len(chunk.tokens) + emb_len > self.chunk_length: next_chunk() chunk.fixes.append(PromptChunkFix(len(chunk.tokens), embedding)) chunk.tokens += [0] * emb_len chunk.multipliers += [weight] * emb_len position += embedding_length_in_tokens if chunk.tokens or not chunks: next_chunk(is_last=True) return chunks, token_count def process_texts(self, texts): token_count = 0 cache = {} batch_chunks = [] for line in texts: if line in cache: chunks = cache[line] else: chunks, current_token_count = self.tokenize_line(line) token_count = max(current_token_count, token_count) cache[line] = chunks batch_chunks.append(chunks) return batch_chunks, token_count def __call__(self, texts): self.emphasis = emphasis.get_current_option(opts.emphasis)() batch_chunks, token_count = self.process_texts(texts) used_embeddings = {} chunk_count = max([len(x) for x in batch_chunks]) zs = [] for i in range(chunk_count): batch_chunk = [chunks[i] if i < len(chunks) else self.empty_chunk() for chunks in batch_chunks] tokens = [x.tokens for x in batch_chunk] multipliers = [x.multipliers for x in batch_chunk] self.embeddings.fixes = [x.fixes for x in batch_chunk] for fixes in self.embeddings.fixes: for _position, embedding in fixes: used_embeddings[embedding.name] = embedding z = self.process_tokens(tokens, multipliers) zs.append(z) global last_extra_generation_params if used_embeddings: names = [] for name, embedding in used_embeddings.items(): print(f'[Textual Inversion] Used Embedding [{name}] in CLIP of [{self.embedding_key}]') names.append(name.replace(":", "").replace(",", "")) if "TI" in last_extra_generation_params: last_extra_generation_params["TI"] += ", " + ", ".join(names) else: last_extra_generation_params["TI"] = ", ".join(names) if any(x for x in texts if "(" in x or "[" in x) and self.emphasis.name != "Original": last_extra_generation_params["Emphasis"] = self.emphasis.name if self.return_pooled: return torch.hstack(zs), zs[0].pooled else: return torch.hstack(zs) def process_tokens(self, remade_batch_tokens, batch_multipliers): tokens = torch.asarray(remade_batch_tokens) if self.id_end != self.id_pad: for batch_pos in range(len(remade_batch_tokens)): index = remade_batch_tokens[batch_pos].index(self.id_end) tokens[batch_pos, index + 1:tokens.shape[1]] = self.id_pad z = self.encode_with_transformers(tokens) pooled = getattr(z, 'pooled', None) self.emphasis.tokens = remade_batch_tokens self.emphasis.multipliers = torch.asarray(batch_multipliers).to(z) self.emphasis.z = z self.emphasis.after_transformers() z = self.emphasis.z if pooled is not None: z.pooled = pooled return z