import os import torch import base64 import json import zlib import numpy as np import safetensors.torch from PIL import Image class EmbeddingEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, torch.Tensor): return {'TORCHTENSOR': obj.cpu().detach().numpy().tolist()} return json.JSONEncoder.default(self, obj) class EmbeddingDecoder(json.JSONDecoder): def __init__(self, *args, **kwargs): json.JSONDecoder.__init__(self, *args, object_hook=self.object_hook, **kwargs) def object_hook(self, d): if 'TORCHTENSOR' in d: return torch.from_numpy(np.array(d['TORCHTENSOR'])) return d def embedding_to_b64(data): d = json.dumps(data, cls=EmbeddingEncoder) return base64.b64encode(d.encode()) def embedding_from_b64(data): d = base64.b64decode(data) return json.loads(d, cls=EmbeddingDecoder) def lcg(m=2 ** 32, a=1664525, c=1013904223, seed=0): while True: seed = (a * seed + c) % m yield seed % 255 def xor_block(block): g = lcg() randblock = np.array([next(g) for _ in range(np.prod(block.shape))]).astype(np.uint8).reshape(block.shape) return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F) def crop_black(img, tol=0): mask = (img > tol).all(2) mask0, mask1 = mask.any(0), mask.any(1) col_start, col_end = mask0.argmax(), mask.shape[1] - mask0[::-1].argmax() row_start, row_end = mask1.argmax(), mask.shape[0] - mask1[::-1].argmax() return img[row_start:row_end, col_start:col_end] def extract_image_data_embed(image): d = 3 outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) & 0x0F black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0) if black_cols[0].shape[0] < 2: print(f'{os.path.basename(getattr(image, "filename", "unknown image file"))}: no embedded information found.') return None data_block_lower = outarr[:, :black_cols[0].min(), :].astype(np.uint8) data_block_upper = outarr[:, black_cols[0].max() + 1:, :].astype(np.uint8) data_block_lower = xor_block(data_block_lower) data_block_upper = xor_block(data_block_upper) data_block = (data_block_upper << 4) | (data_block_lower) data_block = data_block.flatten().tobytes() data = zlib.decompress(data_block) return json.loads(data, cls=EmbeddingDecoder) class Embedding: def __init__(self, vec, name, step=None): self.vec = vec self.name = name self.step = step self.shape = None self.vectors = 0 self.sd_checkpoint = None self.sd_checkpoint_name = None class DirWithTextualInversionEmbeddings: def __init__(self, path): self.path = path self.mtime = None def has_changed(self): if not os.path.isdir(self.path): return False mt = os.path.getmtime(self.path) if self.mtime is None or mt > self.mtime: return True def update(self): if not os.path.isdir(self.path): return self.mtime = os.path.getmtime(self.path) class EmbeddingDatabase: def __init__(self, tokenizer, expected_shape=-1): self.ids_lookup = {} self.word_embeddings = {} self.embedding_dirs = {} self.skipped_embeddings = {} self.expected_shape = expected_shape self.tokenizer = tokenizer self.fixes = [] def add_embedding_dir(self, path): self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path) def clear_embedding_dirs(self): self.embedding_dirs.clear() def register_embedding(self, embedding): return self.register_embedding_by_name(embedding, embedding.name) def register_embedding_by_name(self, embedding, name): ids = self.tokenizer([name], truncation=False, add_special_tokens=False)["input_ids"][0] first_id = ids[0] if first_id not in self.ids_lookup: self.ids_lookup[first_id] = [] if name in self.word_embeddings: lookup = [x for x in self.ids_lookup[first_id] if x[1].name != name] else: lookup = self.ids_lookup[first_id] if embedding is not None: lookup += [(ids, embedding)] self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True) if embedding is None: if name in self.word_embeddings: del self.word_embeddings[name] if len(self.ids_lookup[first_id]) == 0: del self.ids_lookup[first_id] return None self.word_embeddings[name] = embedding return embedding def load_from_file(self, path, filename): name, ext = os.path.splitext(filename) ext = ext.upper() if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']: _, second_ext = os.path.splitext(name) if second_ext.upper() == '.PREVIEW': return embed_image = Image.open(path) if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text: data = embedding_from_b64(embed_image.text['sd-ti-embedding']) name = data.get('name', name) else: data = extract_image_data_embed(embed_image) if data: name = data.get('name', name) else: return elif ext in ['.BIN', '.PT']: data = torch.load(path, map_location="cpu") elif ext in ['.SAFETENSORS']: data = safetensors.torch.load_file(path, device="cpu") else: return if data is not None: embedding = create_embedding_from_data(data, name, filename=filename, filepath=path) if self.expected_shape == -1 or self.expected_shape == embedding.shape: self.register_embedding(embedding) else: self.skipped_embeddings[name] = embedding else: print(f"Unable to load Textual inversion embedding due to data issue: '{name}'.") def load_from_dir(self, embdir): if not os.path.isdir(embdir.path): return for root, _, fns in os.walk(embdir.path, followlinks=True): for fn in fns: try: fullfn = os.path.join(root, fn) if os.stat(fullfn).st_size == 0: continue self.load_from_file(fullfn, fn) except Exception: print(f"Error loading embedding {fn}") continue def load_textual_inversion_embeddings(self): self.ids_lookup.clear() self.word_embeddings.clear() self.skipped_embeddings.clear() for embdir in self.embedding_dirs.values(): self.load_from_dir(embdir) embdir.update() return def find_embedding_at_position(self, tokens, offset): token = tokens[offset] possible_matches = self.ids_lookup.get(token, None) if possible_matches is None: return None, None for ids, embedding in possible_matches: if tokens[offset:offset + len(ids)] == ids: return embedding, len(ids) return None, None def create_embedding_from_data(data, name, filename='unknown embedding file', filepath=None): if 'string_to_param' in data: # textual inversion embeddings param_dict = data['string_to_param'] param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11 assert len(param_dict) == 1, 'embedding file has multiple terms in it' emb = next(iter(param_dict.items()))[1] vec = emb.detach().to(dtype=torch.float32) shape = vec.shape[-1] vectors = vec.shape[0] elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding vec = {k: v.detach().to(dtype=torch.float32) for k, v in data.items()} shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1] vectors = data['clip_g'].shape[0] elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts assert len(data.keys()) == 1, 'embedding file has multiple terms in it' emb = next(iter(data.values())) if len(emb.shape) == 1: emb = emb.unsqueeze(0) vec = emb.detach().to(dtype=torch.float32) shape = vec.shape[-1] vectors = vec.shape[0] else: raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.") embedding = Embedding(vec, name) embedding.step = data.get('step', None) embedding.sd_checkpoint = data.get('sd_checkpoint', None) embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) embedding.vectors = vectors embedding.shape = shape if filepath: embedding.filename = filepath return embedding